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Throughout, (Ω,A, P ) is a fixed probability space.

Proposition 1. Let X be a P -quasi-integrable r.v. on Ω, and let B be a sub-σ-field of A.
Then there exists a P -quasi-integrable r.v. EBX such that

(i) EBX is B-measurable.

(ii)
∫
B
EBXdP =

∫
B
XdP for all B ∈ B.

Moreover, any two such EBX’s are equal a.s. P .

Definition 2. Let X and B be as in the proposition. Any of the P -equivalent EBX’s is
called a (or “the”) conditional expectation of X given B.

Four proofs of proposition :

1◦̄. Motivational. Valid only in the case Ω =
∑

i∈I Bi
1, B = {

∑
j∈J Bj : J ⊂ I}, with I

countable.

2◦̄. “Build-’em-up” from case X ∈ L2(Ω,A, P ), for which the projection ofX onto L2(Ω,B, P )
serves as EBX.

3◦̄. Use Radon-Nikodym theorem. See Billingsley, Section 34.

4◦̄. Use martingale theory (coming soon!).

Proof. 1◦̄ of basic proposition.
This will be an honest proof, but only subject to a very restrictive assumption; namely,

that there exists a partition of Ω into countably many sets Bi ∈ B(i ∈ I), and that B =
{
∑

j∈J Bj : J ⊂ I} (i.e., that any set in B is the union of some Bj’s). (In essence, the
measurable space (Ω,B) is discrete.) Note that a real function on Ω is B-measurable if and
only if it is constant on each cell Bi of the partition. For each ω ∈ Ω, we define [ω]B to be
the smallest element of B containing ω, i.e., the Bi that contains ω.

1“
∑

” denotes disjoint union.
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Uniqueness. (i) implies that EBX must be constant on [ω]B. Using this in (ii) we get∫
[ω]B

XdP =

∫
[ω]B

EBXdP = (EBX)(ω)P ([ω]B).

Thus if P ([ω]B) > 0, we must have

(EBX)(ω) =

∫
[ω]B

XdP

P ([ω]B)
= E(X | [ω]B)

i.e.,

(EBX)(ω) = the average value of X over [ω]B .

It follows that any two EBX’s can differ only at ω’s such that P ([ω]B) = 0. But the set
of such ω’s, namely,

∑
j:P (Bj)=0Bj, is a set of probability zero, so we have the almost sure

uniqueness.

Existence. It is clear how to proceed. We set

(EBX)(ω) :=

{
E(X | [ω]B) if P ([ω]B) > 0

0(say, or EX) if P ([ω]B) = 0.

Our EBX is constant over each cell Bi of the partition and therefore B-measurable. Moreover,
for any B =

∑
j∈J Bj ∈ B, we have, with J̃ := {j ∈ J : P (Bj) > 0},
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∫
B

XdP =
∑
j∈J

∫
Bj

XdP =
∑
j∈J̃

∫
Bj

XdP =
∑
j∈J̃

E(X |Bj)P (Bj)

=
∑
j∈J̃

∫
Bj

E(X | [ω]B)P (dω) (since Bj = [ω]B for ω ∈ Bj)

=
∑
j∈J

∫
Bj

(EBX)(ω)P (dω)

=

∫
B

EBXdP

(1)

provided EBX is quasi-integrable over B. But EBX is quasi-integrable over {EBX ≥ 0} ∈ B,
so (1) for this event implies

E
[
(EBX)+

]
=

∫
{EBX≥0}

EBXdP =

∫
{EBX≥0}

XdP

≤
∫
{EBX≥0}

X+dP ≤ EX+.

Similarly, (1) implies E[(EBX)−] ≤ EX−. Therefore EBX is in fact quasi-integrable (in the
same sense(s) as X) over the entire sample space Ω, and, in particular, quasi-integrable over
each B ∈ B, as required. Thus (1), i.e., (ii), holds in general.

Remarks 3. The general B cannot be so neatly associated with a partition of Ω. To see
what’s involved, use B to define an equivalence relation on Ω: say ω1 ∼B ω2 exactly when
every B ∈ B containing ω1 also contains ω2, and vice versa. Call the resulting equivalence
classes B-cosets, and denote by [ω]B the B-coset containing ω ∈ Ω:

[ω]B =
⋂

B∈B :ω∈B

B.

Example 4. (a) B as in “proof” 1◦̄. The B-cosets are precisely the Bi’s, and [ω]B here is
the same thing as before – the Bi containing ω.

(b) B = σ〈T ; B̃〉, where T : σ → σ̃ for some measurable space (Ω̃, B̃) such that B̃ contains
all singletons. Since B = {T−1(B̃) : B̃ ∈ B̃} (by definition) and since {T (ω)} ∈ B̃, it
follows that [ω]B = T−1({T (ω)}).

The B-cosets do always partition Ω, and every B ∈ B is the sum of those B-cosets it
contains. But the sum is in general uncountable (cf. Example(b), with (Ω̃, B̃) = (R,R));
moreover, not every [ω]B, much less every sum of B-cosets, need belong to B. (In Example
(b), every [ω]B, but not necessarily every sum of B-cosets, belongs to B.) So we cannot say
B = {

∑
j∈J Bj : each Bj is a B-coset}, and we cannot identify constancy over B-cosets with

B-measurability.
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ω

T−1
({
T (ω)

})
= [ω]B

T (ω)T

Ω
Ω̃

{T (ω)} ∈ B̃

Also, even if [ω]B belongs to B, it may (and in interesting cases will) have probability

zero; typically all the expressive E([ω]B) ≡

∫
[ω]B

XdP

P ([ω]B)
are either meaningless ([ω]B /∈ B) or

indeterminate (P ([ω]B) = 0). However, if we ignore these unpleasantnesses, and go through
the previous proof informally, we see that

(a) one can intuitively think of (EBX)(ω) as E(X | [ω]B), the “average value of X over the
smallest event in B containing ω”, and

(b) conditions (i) and (ii) in the proposition express the global behavior of the locally (un-)
defined function E(X | [ � ]B).

As an aid to the intuition, we may sometimes denote the value of an EBX at ω by
E(X | [ω]B). But keep in mind that this quantity is not defined unless [ω]B ∈ B and P ([ω]B) >
0, in which case it is in fact that the value of any EBX at ω.

Example 5. (1) B = {φ,Ω}, EBX = (EX)IΩ (uniquely). E{φ,Ω}X is the ultimate smooth-
ing of X – to a constant function.

(2) B = {
∑

j∈J Bj : J ⊂ {1, 2, 3}} with P (Bj) > 0 for all j, EBX =
∑3

j=1E(X |Bj)IBj

(uniquely). EBX is a partial smoothing of X.

(3) Same B as (2), except P (B3) = 0. General EBX =
∑2

j=1E(X |Bj)IBj
+cIB3 , c arbitrary.

(4) Ω = [−1,+1], A = {Borels}, dP = fdλ, λ = Lebesgue measure, 0 < f < ∞ (for
convenience). B = σ〈T 〉, where T : Ω → [0, 1] is defined by T (ω) = |ω|. (EBX)(ω) =

X(ω) f(ω)
f(ω)+f(−ω)

+X(−ω) f(−ω)
f(ω)+f(−ω)

(at least for X ≥ 0). EBX is the smoothing of X to
an even function.

One easily checks that B = {A ∈ A : A = −A}, where −A := {−a : a ∈ A}. Let
X ≥ 0. We have [ω]B = {−ω, ω} (recall Example (b) above), which has probability zero
under P . But given that T (ω) = t, one intuitively feels that ω = t with probability

f(t)
f(t)+f(−t) and ω = −t with probability f(−t)

f(t)+f(−t) . Hence E(X | [ω]B) “ought” to be

X(ω) f(ω)
f(ω)+f(−ω)

+ X(−ω) f(−ω)
f(ω)+f(−ω)

=: Z(ω). So we propose Z as a candidate for EBX.
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Z is B-measurable because it is A-measurable and even (Z(ω) = Z(−ω) ∀ω ∈ Ω).
Moreover, if 0 ≤ U is B-measurable, i.e., A-measurable and even, then we have∫

Ω

U(ω)Z(ω)P (dω) =

∫
U(ω)

[
X(ω)

f(ω)

f(ω) + f(−ω)
+X(−ω)

f(−ω)

f(ω) + f(−ω)

]
f(ω)dω

=

∫
U(ω)X(ω)

f(ω)f(ω)

f(ω) + f(−ω)
dω +

∫
U(ω)X(−ω)

f(−ω)f(ω)

f(ω) + f(−ω)
dω

=

∫
U(ω)X(ω)

f(ω)f(ω)

f(ω) + f(−ω)
dω +

∫
U(−ω)X(ω)

f(ω)f(−ω)

f(−ω) + f(ω)
dω

=

∫
U(ω)X(ω)

f(ω)

f(ω) + f(−ω)

[
f(ω) + f(−ω)

]
dω

=

∫
U(ω)X(ω)f(ω)dω =

∫
U(ω)X(ω)P (dω)

It follows (take U = IB, B ∈ B) that our Z is indeed a conditional expectation of X given
B. Later on we shall develop a machine which will crank out Z for EBX automatically.

Basic properties of EBX :
Note. Whenever we write EBX, we automatically assure X P -quasi-integrable (unless

a special fuss is made), and we always view EBX as an arbitrary but fixed version of the
conditional expectation of X given B.

Smoothing-type properties :

(S1) EBX ∈


Q+

Q−
L1

 iff X ∈


Q+

Q−
L1

. EEBX = EX.

(S2) If X is B-measurable, then EB(XY )
a.s.
= XEBY and, in particular, EBX

a.s.
= X.

(S3) If B1 ⊂ B2, then EB1(EB2X)
a.s.
= EB1X

a.s.
= EB2(EB1X).

Expectation operator type properties :

(E1) EB1
a.s.
= 1.

(E2) EB(cX) = cEBX; EB(X + Y )
a.s.
= EBX + EBY if X and Y are both in

{
Q+

Q−

}
.

(E3) (a) If X1 ≤ X2, then EBX1

a.s.

≤ EBX2. In particular, if 0 ≤ X then 0
a.s.

≤ EB.

(b) (EBX)+
a.s.

≤ EB(X+); (EBX)−
a.s.

≤ EB(X−); |EBX|
a.s.

≤ EB|X|.

(c) If X1

a.s.

< X2 and at least one of X1 and X2 is integrable, then EBX1

a.s.

< EBX2.
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(E4) (MCT ) If Xn ↑ X, then EBXn

a.s.

↑ EBX over ∪m≥1{EBXm > −∞}.
If Xn ↓ X, then EBXn

a.s.

↓ EBX over ∪m≥1{EBXm <∞}.

(E5) (Fatou) If E(infnXn) > −∞, then EB(lim infnXn)
a.s.

≤ lim infnE
BXn.

If E(supnXn) <∞, then lim supnE
B

a.s.

≤ XnE
B(lim supnXn).

(E6) (DCT ) If E(supn|Xn|) <∞ and limnXn exists a.s., then EB(limnXn)
a.s.
= limnE

BXn.

(E7) If X and B are independent, then EBX
a.s.
= (EX)IΩ.

Conditional expectation given a measurable function :

Motivation. So far we have considered conditioning relative to sub-σ-algebras B. There
is a closely related notion, involving conditioning by a measurable function. Let T : (Ω,A)→
(T , C) be measurable, and set B ≡ BT := T−1(C). Look at EBTX. This is a BT -measurable
function and therefore (by the Factorization Theorem) can be written as a measurable func-
tion of T , say, as

E(X |T ) ◦ T,

where E(X |T ) : T → R is C-measurable. (Intuitively, E(X|T )(t) = “the constant value of
EBTX over all the BT -coset {T = t}”.) Moreover, we have∫

{T∈C}
X dP =

∫
{T∈C}

EBTX dP =

∫
{T∈C}

E(X|T ) ◦ T dP

=

∫
C

E(X|T ) d(PT−1) (change of variable)

(2)

for all C ∈ C. It’s easy to check that E(X|T ) is PT−1-essentially uniquely determined by
(2).

For the sake of intuition, we sometimes write E(X|T )(t) as E(X|T = t).

Definition 6. Let X be P -quasi-integrable, and let T : Ω→ T be measurable between the
σ-fields A and C. Anyone of the PT−1-equivalent C-measurable functions E(X|T ) : T → R

such that ∫
{T∈C}

X dP =

∫
C

E(X|T )d(PT−1) ∀C ∈ C

is called a conditional expectation of X given T .

Correspondence between EbX and E(X|T ) :

(a) If BT := σ〈T 〉 = T−1(C), then

EBT = E(X|T ) ◦ T.
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(Ω,A)

EBT X

$$IIIIIIIII

T
��

(T , C)
E(X|T )

// (R,R)

(b) If T := (identity mapping on Ω) and (T , C) := (Ω,B), then

EBT = E(X|T ).

Warning. Often E(X|T ) is used as the notation for EBTX.

Proofs :

Proof. 2◦̄ of basic proposition.

Uniqueness. It suffices to show that if Y and Z are B-measurable and P -quasi-
integrable and

∫
B
Y dP ≤

∫
B
Z dP ∀B ∈ B, then Y ≤ Z a.s. For this, consider the event

B := {Z < t ≤ Y } ∈ B. We have

tP (Bt) ≤
∫
Bt

Y dP ≤
∫
Bt

Z dP < tP (Bt),

a contradiction, unless P (Bt) = 0. But {Z < Y } = ∪t rationalBt, so P{Z < Y } = 0, i.e.,
Y ≤ Z a.s.

Existence. If we had EBX, we would expect (using the “build-’em-up” technique)
that

∫
U(X −EBX) dP = 0, i.e., (X −EBX)⊥U , for B-functions U . [Indeed, with U = IB,

B ∈ B, this is required property (ii).] This suggests what to do:

Step 1. X ∈ L2(Ω,A, P ). Check that L2(Ω,B, P ) is a Hilbert subspace of L2(Ω,A, P ). By
the basic projection theorem for Hilbert spaces, there is a vector, say, Z, in L2(B)
such that ‖X − Z‖2 = infY ∈L2(B)‖X − Y ‖2. This Z satisfies

(X − Z)⊥U ∀U ∈ L2(B). (3)

We claim that Z serves as EBX: Z is B-measurable, Z ∈ L2 ⊂ L1 ⊂ Q, and by (3)∫
B
Z dP =

∫
B
X dP for each B ∈ B.

Step 2. X ≥ 0. Define Xn = X∧n ∈ L2(Ω,A, P ). Use Step 1 to determine EBXn —
B-measurable and satisfying ∫

B

EBXn dP =

∫
B

Xn dP. (4)
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Since 0 ≤ Xn ≤ Xn+1, it follows (cf. pf. of uniqueness) that 0 ≤ EBXn ≤ EBXn+1

a.s. Thus the (EBXn)’s increases on a set of probability one; in fact (why?), they may
be taken to increase everywhere. We claim limn ↑ EBXn serves as EBX. Clearly,
limn ↑ EBXn is B-measurable and P -quasi-integrable (in fact, ≥ 0). Apply the MCT
to (4) to get∫

B

(lim
n
↑ EBXn) dP = lim

n
↑
∫
B

EBXn dP = lim
n
↑
∫
B

Xn dP

=

∫
B

(lim
n
↑ Xn) dP =

∫
B

X dP for each B ∈ B.

Step 3. X ∈ Q−. Use Step 2 to determine EB(X+) and EB(X−). Observe E
(
EB(X−)

)
=

E(X−) < ∞ (consider B = Ω). In particular, EB(X−) < ∞ a.s.; without loss of
generality EB(X−) < ∞ everywhere. We claim that EB(X+) − EB(X−) serves as
EBX. Clearly, EB(X+)−EB(X−) is well defined, B-measurable, and quasi-integrable
(since EB(X−) ∈ L1), and for each B ∈ B∫
B

(
EB(X+)− EB(X−)

)
dP =

∫
B

EB(X+) dP −
∫
B

EB(X−) dP (since EB(X−) ∈ L1)

=

∫
B

X+ dP −
∫
B

X− dP =

∫
B

X dP.

Notes.

(a) The constructions in Steps 2 and 3 are entirely analogous to what we did in developing
(unconditional) expectation.

(b) If X ∈ L2(A), we have seen that EBX, the B-smoothing of X, is obtained by moving X
as little as possible.

Proofs of properties of conditional expectation :

(E1) Simple.

(S1) Simple.

(E2) First part simple. If both X and Y are in Q−, then by (S1) so are EBX and EBY ,
and so are X + Y and EBX + EBY . The last is B-measurable, and for each B ∈ B∫
B

(EBX+EBY ) dP =

∫
B

EBX dP+

∫
B

EBY dP =

∫
B

X dP+

∫
B

Y dP =

∫
B

(X+Y ) dP.

(E3) (a) Proved in uniqueness part of proof 2◦̄.
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(b) For example, X ≤ X+ and so by (a) EBX
a.s.

≤ EB(X+). But EB(X+)
a.s.

≥ 0, so

(EBX)+
a.s.

≤ EB(X+).

(c) Taking X = X2 − X1 and using (E2), it suffices to show that if 0
a.s.

< X, then

0
a.s.

< EBX. Actually, we do a bit more: If x ≥ 0, then {EBX = 0}
a.s.

⊂ {X = 0},
because 0 =

∫
{EBX=0}E

BX =
∫
{EBX=0}X.

(S2) Case 1: X ≥ 0, Y ≥ 0. Since
∫
UEBY =

∫
UY holds for B-indicators U , it holds

(build-’em-up !) for non-negative B-functions U . Hence for B ∈ B∫
B

XEBY =

∫
(IBX)EBY =

∫
(IBX)Y =

∫
B

XY.

Case 2: XY and Y are both quasi-integrable. Note XY = (X+ −X−)(Y + − Y −) =
X+Y + + X−Y − + (−X+Y −) + (−X−Y +), where the four r.v.’s here have disjoint
supports. This, e.g., if XY ∈ Q−, the all four r.v.’s are in Q−, and (E2) gives (a.s.
throughout)

EB(XY ) = EB(X+Y +) + EB(X−Y −)− EB(X+Y −)− EB(X−Y +)

= X+EBY + +X−EBY − −X+EBY − −X−EBY +

= (X+ − Y −)(EBY + − EBY −)

= XEBY.

(S3) Simple.

(E4) Put Bc,m = {EBXm ≥ c} ∈ B (0 > c > −∞). Now Xn ↑ X

⇒ XnIBc,m ↑ XIBc,m ⇒ for B ∈ B,
∫
B

(a.s.)

lim
n
↑ EB(XnIBc,m)︸ ︷︷ ︸
≥c for n≥m (a.s.) [use (E3), (S2)]

= lim
n
↑
∫
B

EB(XnIBc,m) by MCT

= lim
n
↑
∫
B

XnIBc,m =

∫
B

lim
n
↑ (XnIBc,m) =

∫
B

XIBc,m by MCT

⇒ EB(X;Bc,m) ↑ EB(X;Bc,m) a.s. by uniqueness of conditional expectation

⇒ IBc,mE
BXn ↑ IBc,mE

BX a.s. by (S2), i.e. EBXn

a.s.

↑ EBX over Bc,m.

But ∪m≥1{EBXm > −∞} = ∪m≥1 ∪c rational Bc,m.

(E5)-(E6) Repeat unconditional proofs.

(E7) Use E(IBX) = P (B)EX for B ∈ B.
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