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Throughout, (€2, A, P) is a fixed probability space.

Proposition 1. Let X be a P-quasi-integrable r.v. on §2, and let B be a sub-o-field of A.
Then there exists a P-quasi-integrable r.v. EPX such that

(i) EBX is B-measurable.
(i1) fB EBXdP = fB XdP for all B € B.
Moreover, any two such EBX’s are equal a.s. P.

Definition 2. Let X and B be as in the proposition. Any of the P-equivalent E®X’s is
called a (or “the”) conditional expectation of X given B.

Four proofs of proposition

1°. Motivational. Valid only in the case Q = >, Bi', B = {3 ,.,; B; : J C I}, with I
countable.

2°. “Build-"em-up” from case X € L*(Q, A, P), for which the projection of X onto L*(2, B, P)
serves as FPX.

3°. Use Radon-Nikodym theorem. See Billingsley, Section 34.

4°. Use martingale theory (coming soon!).

Proof. 12 of basic proposition.

This will be an honest proof, but only subject to a very restrictive assumption; namely,
that there exists a partition of € into countably many sets B; € B(i € I), and that B =
{> ey Bj + J C I} (ie, that any set in B is the union of some B;’s). (In essence, the
measurable space (€2, B) is discrete.) Note that a real function on € is B-measurable if and
only if it is constant on each cell B; of the partition. For each w € Q, we define [w]|s to be
the smallest element of B containing w, i.e., the B; that contains w.

L«3™ denotes disjoint union.



Uniqueness. (i) implies that E®X must be constant on [w]z. Using this in (ii) we get
XdP :/ EBXdP = (EPX)(w)P([w]p).
[wls [wis
Thus if P(Jw]g) > 0, we must have

XdP

(E*X)(w) = “ps = B | Wlo)

ie.,

(E®X)(w) = the average value of X over [w]z|.

It follows that any two EPX’s can differ only at w’s such that P([w]z) = 0. But the set
of such w’s, namely, > :P(B;)=0 Bj, is a set of probability zero, so we have the almost sure
uniqueness.

Existence. It is clear how to proceed. We set

_ JEX [Ww]s)  if P(lw]p) >0
(B2X)(w) = {O(say, or EX) if P([w]g) = 0.

Our EBX is constant over each cell B; of the partition and therefore B-measurable. Moreover,
for any B =) ., B; € B, we have, with J = {j € J : P(B;) > 0},

jeJ
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/XdP /XdP ZEX|B B;)

_ Z/ (X | [w]g)P(dw) (sincje B;j = [w]p for w € B))

jeJ 1
_ Z/ (EPX)(w)P(dw) )
— /B EBXdP

provided EP X is quasi-integrable over B. But E®X is quasi-integrable over { E®X > 0} € B,
so (1) for this event implies

E[(EPX)*"] = / EFXdP = / Xdpr
{EBX>0} {EBX>0}

< / XtdP< EX™.
{EBX>0}

Similarly, (1) implies E[(E®X)~] < EX~. Therefore EBX is in fact quasi-integrable (in the
same sense(s) as X) over the entire sample space €2, and, in particular, quasi-integrable over
each B € B, as required. Thus (1), i.e., (¢7), holds in general. O

Remarks 3. The general B cannot be so neatly associated with a partition of €2. To see
what’s involved, use B to define an equivalence relation on ): say w; ~p ws exactly when
every B € B containing w; also contains ws, and vice versa. Call the resulting equivalence
classes B-cosets, and denote by |w]z the B-coset containing w € 2

[W]BZ ﬂ B.

BeB:weB

Example 4. (a) B as in “proof” 1°. The B-cosets are precisely the B;’s, and [w]s here is

the same thing as before — the B; containing w.

(b) B = o(T;B), where T : 0 — & for some measurable space (Q, B) such that B contains
all singletons. Since B = {T~Y(B) : B € B} (by definition) and since {T'(w)} € B, it
follows that [w]z =T ({T'(w)}).

The B-cosets do always partition €2, and every B € B is the sum of those B-cosets it
contains. But the sum is in general uncountable (cf. Example(b), with (Q,B) = (R, R));
moreover, not every [w]g, much less every sum of B-cosets, need belong to 5. (In Example
(b), every [w]g, but not necessarily every sum of B-cosets, belongs to B.) So we cannot say
B ={>;c;Bj:each B is a B-coset}, and we cannot identify constancy over B-cosets with
B-measurability.



Also, even if [w]|s belongs to B, it may (and in interesting cases will) have probability
fMB XdP

P([w]s)

indeterminate (P([w]g) = 0). However, if we ignore these unpleasantnesses, and go through
the previous proof informally, we see that

zero; typically all the expressive F(|w|p) are either meaningless ([w]|s ¢ B) or

(a) one can intuitively think of (E5X)(w) as E(X |[w]g), the “average value of X over the
smallest event in B containing w”, and

(b) conditions () and (i) in the proposition express the global behavior of the locally (un-)
defined function E(X |[.]g).

As an aid to the intuition, we may sometimes denote the value of an EBX at w by
E(X | |w]g). But keep in mind that this quantity is not defined unless [w]|s € B and P([w]g) >
0, in which case it is in fact that the value of any E®X at w.

Example 5. (1) B = {¢,Q}, EBX = (EX)I, (uniquely). E{*® X is the ultimate smooth-
ing of X — to a constant function.

(2) B={X,c;B : J C{1,2,3}} with P(B;) > 0 for all j, EX = Y} | E(X|B))Ip,
(uniquely). EBX is a partial smoothing of X.

(3) Same B as (2), except P(Bs) = 0. General E5X = 2]2.:1 E(X | Bj)Ip,+clp,, c arbitrary.

(4) Q = [-1,41], A = {Borels}, dP = fd\, A = Lebesgue measure, 0 < f < oo (for
convenience). B = o(T), where T : Q — [0,1] is defined by T(w) = |w|. (EEX)(w) =
X(w)% + X(—w)% (at least for X > 0). EPX is the smoothing of X to

an even function.

One easily checks that B = {A € A: A = —A}, where —A = {—a : a € A}. Let
X > 0. We have [w|g = {—w,w} (recall Example (b) above), which has probability zero
under P. But given that T'(w) = ¢, one intuitively feels that w = t with probability

% and w = —t with probability % Hence F(X |[w|g) “ought” to be
X(w)% + X(—w)% =: Z(w). So we propose Z as a candidate for EFX.



Z is B-measurable because it is A-measurable and even (Z(w) = Z(—w) Yw € Q).
Moreover, if 0 < U is B-measurable, i.e., A-measurable and even, then we have
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_ / U ()X () f(w)dw = / U(w) X () P(dw)

It follows (take U = Ig, B € B) that our Z is indeed a conditional expectation of X given
B. Later on we shall develop a machine which will crank out Z for E¥X automatically.

Basic properties of E5X

Note. Whenever we write E5X, we automatically assure X P-quasi-integrable (unless
a special fuss is made), and we always view EPX as an arbitrary but fixed version of the
conditional expectation of X given B.

Smoothing-type properties

Q4 QR+
(S1) EBX € Q_%if X el Q_}. EEBX = EX.
Lt Lt

(S2) If X is B-measurable, then EP(XY) = XEPY and, in particular, E5X = X.
(S3) If B, C By, then EB: (EF2X) % EBiX = BB (EBiX).

Expectation operator type properties

(E1) EP1 = 1.

(E2) EB(cX) = cEPX; EB(X +Y) = EBX + FPY if X and Y are both in {g+}

(E3) (a) If X; < Xy, then EBX, < EBX,. In particular, if 0 < X then 0 < EB.
(b) (EBX)* < EB(X*); (BBX)~ < EB(X™); |EBX| < EB|X].
(¢) If X; < X, and at least one of X; and X, is integrable, then E8X; < EB5X,.



(E4) (MCT) If X, T X, then EBX, T EBX over Upsi{E®X,, > —oo}.
If X, | X, then EBX, | EBX over Upsi{EfX,, < oo}

(E5) (Fatou) If E(inf, X,,) > —oo, then EB(liminf, X,,) < liminf, EEX,,.
If E(sup,, X,,) < oo, then limsup,, E® < X, EB(limsup,, X,,).

(E6) (DCT) If E(sup,|X,|) < oo and lim,, X,, exists a.s., then E5(lim,, X,,) = lim,, EFX,,.

(E7) If X and B are independent, then EX = (EX)I,.
Conditional expectation given a measurable function

Motivation. So far we have considered conditioning relative to sub-o-algebras B. There
is a closely related notion, involving conditioning by a measurable function. Let T": (€2, A) —
(7,C) be measurable, and set B = By := T71(C). Look at EB7 X. This is a Bp-measurable
function and therefore (by the Factorization Theorem) can be written as a measurable func-

tion of T, say, as
E(X|T)oT,

where E(X |T) : 7 — R is C-measurable. (Intuitively, F(X|T)(t) = “the constant value of
EBT X over all the Br-coset {T' = t}”.) Moreover, we have

/ XdP—/ EBTXdP—/ E(X|T)oTdP
{Tecy {Tecy {TecC}

(2)
= / E(X|T)d(PT™") (change of variable)
c

for all C' € C. It’s easy to check that F(X|T) is PT'-essentially uniquely determined by

2).

For the sake of intuition, we sometimes write E(X|T)(t) as E(X|T =t).

Definition 6. Let X be P-quasi-integrable, and let T": {2 — 7 be measurable between the
o-fields A and C. Anyone of the PT~!-equivalent C-measurable functions F(X|T): 7 — R
such that

/ XdpP = / E(X|T)d(PT™) vCecC
{recy C
is called a conditional expectation of X given T.
Correspondence between ELX and E(X|T)
(a) If By == o(T) = T~'(C), then

EPT = E(X|T)oT.



(b) If T":== (identity mapping on 2) and (7,C) = (2, B), then
EPT = E(X|T).

Warning. Often E(X|T) is used as the notation for E57 X.

Proofs
Proof. 22 of basic proposition.
Uniqueness. It suffices to show that if ¥ and Z are B-measurable and P-quasi-

integrable and [, Y dP < [, ZdP VB € B, then Y < Z a.s. For this, consider the event
B:={Z <t<Y} e B. We have

tP(B,) < /

YdP < / ZdP < tP(By),
By By

a contradiction, unless P(B;) = 0. But {Z < Y} = U rationat B, s0 P{Z < Y} =0, i.e.,
Y < Z as.

Existence. If we had EPX, we would expect (using the “build-’em-up” technique)
that [U(X — EPX)dP =0, i.e., (X — EPX)LU, for B-functions U. [Indeed, with U = Ip,
B € B, this is required property (i7).] This suggests what to do:

Step 1. X € L*(, A, P). Check that L?(Q, B, P) is a Hilbert subspace of L?(Q2, A, P). By
the basic projection theorem for Hilbert spaces, there is a vector, say, Z, in L*(B)
such that || X — Z||; = infycr2p) || X — Y||2. This Z satisfies

(X —Z)LU VYU e L*B). (3)

We claim that Z serves as EPX: Z is B-measurable, Z € L? C L' C Q, and by (3)
[z ZdP = [, X dP for each B € B.

Step 2. X > 0. Define X,, = X, € L*(Q, A, P). Use Step 1 to determine EFX, —
B-measurable and satisfying

/ EFX,dP = / X, dP. (4)
B B
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Since 0 < X,, < X,,;1, it follows (cf. pf. of uniqueness) that 0 < E8X, < EFX,
a.s. Thus the (E®X,,)’s increases on a set of probability one; in fact (why?), they may
be taken to increase everywhere. We claim lim, | E®X,, serves as E8X. Clearly,
lim,, T EPX,, is B-measurable and P-quasi-integrable (in fact, > 0). Apply the MCT
to (4) to get

/ (lim 1 E®X,)dP = lim 1 / EBX,dP =1lim 1 / X, dP
B ™ n B n B

:/(limTXn)dP:/XdP for each B € B.
B " B

Step 3. X € Q. Use Step 2 to determine E®(X*) and E5(X~). Observe E(ES(X™)) =
E(X7) < oo (consider B = Q). In particular, E5(X~) < oo a.s.; without loss of
generality EP(X ™) < oo everywhere. We claim that E¥(X*+) — EB(X ™) serves as
EBX. Clearly, EP(X*)—EP(X ™) is well defined, B-measurable, and quasi-integrable
(since E®(X~) € L'), and for each B € B

/(EB(X+)—EB(X—)) dP:/EB(X+)dP—/ EB(X7)dP (since EF(X™) € L)

B
:/X+dP—/X_dP:/XdP.
B B B

Notes.

(a) The constructions in Steps 2 and 3 are entirely analogous to what we did in developing
(unconditional) expectation.

(b) If X € L*(A), we have seen that EP X, the B-smoothing of X, is obtained by moving X
as little as possible.

Proofs of properties of conditional expectation
(E1) Simple.
(S1) Simple.

(E2) First part simple. If both X and Y are in Q_, then by (S1) so are E¥X and EPY,
and so are X +Y and E®X + EBY. The last is B-measurable, and for each B € B

/ (EPX+EPY)dP = / EPX dP+ /
B B

EBYdP:/XdPJr/YdP:/(X+Y)dP.
B B B B

(E3) (a) Proved in uniqueness part of proof 2°.

8



(b) For example, X < X+ and so by (a) EBX < EB(X*). But E5(X*) > 0, so
(EBX)* < EB(XH).

(¢) Taking X = X, — X; and using (E2), it suffices to show that if 0 < X, then
0 < EBX. Actually, we do a bit more: If z > 0, then {E®X = 0} C {X = 0},
because 0 = f{EBX:o} EBX = f{EBX:O} X.

(S2) Case 1: X > 0,Y > 0. Since [UEPY = [UY holds for B-indicators U, it holds
(build-"em-up !) for non-negative B-functions U. Hence for B € B

/B XEPY = / (IpX)EPY = / IgX)Y / XY.

Case 2: XY and Y are both quasi-integrable. Note XY = —X)YT-Y") =
XYt + XV 4+ (—=XTY") + (—X"Y7T), where the four r.v.’s here have disjoint
supports. This, e.g., if XY € @_, the all four r.v.’s are in @)_, and (E2) gives (a.s.
throughout)

E(XY)=EBf(XTY") +E5(X YY) - EB(X'Y") - EF(X"Y™)
= XTEPY T + X EPY™ — XTEPY~ — X EPY ™
= (XT Y )(EFY*T — EPY ™)
= XEPY.
(S3) Simple.
(E4) Put B.,, = {EFX,, >c}€B (0>c¢>-0). Now X,, T X

(a.s.)

= X,Ip,, 1 XIp,, = for B€B, / lim 1 EB(X,Ip, )
B " —_—
>c for n>m (a.s.) [use (E3), (S2)]

= lim 1 / E%(X,Ip,,) by MCT
n B

=lim | / X Ip,, = / lim 1 (X, I5,,,) = / XIp., by MCT
= (X ;BBC,m) T EP (XE;; Bem) a.s. by uniqueiess of conditional expectation
= I E®X, 1 Ip  E5X as. by (S2),ie. E®X, 1 EBX over By,
But Ups1{EPX,, > —00} = Up>1 Ue rational Be.n-
(E5)-(E6) Repeat unconditional proofs.
(E7) Use E(IgX) = P(B)EX for B € B.



