Conditional Expectation

By Prof. Jim Fill

April 12, 2010

Throughout, (Ω, \mathcal{A}, P) is a fixed probability space.

Proposition 1. Let X be a P-quasi-integrable r.v. on Ω , and let \mathcal{B} be a sub- σ -field of \mathcal{A} . Then there exists a P-quasi-integrable r.v. $E^{\mathcal{B}}X$ such that

- (i) $E^{\mathcal{B}}X$ is \mathcal{B} -measurable.
- (ii) $\int_B E^{\mathcal{B}} X dP = \int_B X dP$ for all $B \in \mathcal{B}$.

Moreover, any two such $E^{\mathcal{B}}X$'s are equal a.s. P.

Definition 2. Let X and \mathcal{B} be as in the proposition. Any of the *P*-equivalent $E^{\mathcal{B}}X$'s is called a (or "the") conditional expectation of X given \mathcal{B} .

Four proofs of proposition :

- 1^o. Motivational. Valid only in the case $\Omega = \sum_{i \in I} B_i^{-1}$, $\mathcal{B} = \{\sum_{j \in J} B_j : J \subset I\}$, with I countable.
- 2^o. "Build-'em-up" from case $X \in L^2(\Omega, \mathcal{A}, P)$, for which the projection of X onto $L^2(\Omega, \mathcal{B}, P)$ serves as $E^{\mathcal{B}}X$.
- 3° . Use Radon-Nikodym theorem. See Billingsley, Section 34.
- 4° . Use martingale theory (coming soon!).

Proof. 1° of basic proposition.

This will be an honest proof, but only subject to a very restrictive assumption; namely, that there exists a partition of Ω into countably many sets $B_i \in \mathcal{B}(i \in I)$, and that $\mathcal{B} = \{\sum_{j \in J} B_j : J \subset I\}$ (i.e., that any set in \mathcal{B} is the union of some B_j 's). (In essence, the measurable space (Ω, \mathcal{B}) is discrete.) Note that a real function on Ω is \mathcal{B} -measurable if and only if it is constant on each cell B_i of the partition. For each $\omega \in \Omega$, we define $[\omega]_{\mathcal{B}}$ to be the smallest element of \mathcal{B} containing ω , i.e., the B_i that contains ω .

 $^{^1\,{\}rm ``{\sum}''}$ denotes disjoint union.

Uniqueness. (i) implies that $E^{\mathcal{B}}X$ must be constant on $[\omega]_{\mathcal{B}}$. Using this in (ii) we get

$$\int_{[\omega]_{\mathcal{B}}} X dP = \int_{[\omega]_{\mathcal{B}}} E^{\mathcal{B}} X dP = (E^{\mathcal{B}} X)(\omega) P([\omega]_{\mathcal{B}}).$$

Thus if $P([\omega]_{\mathcal{B}}) > 0$, we must have

$$(E^{\mathcal{B}}X)(\omega) = \frac{\int_{[\omega]_{\mathcal{B}}} X dP}{P([\omega]_{\mathcal{B}})} = E(X \mid [\omega]_{\mathcal{B}})$$

i.e.,

$$(E^{\mathcal{B}}X)(\omega)$$
 = the average value of X over $[\omega]_{\mathcal{B}}$

It follows that any two $E^{\mathcal{B}}X$'s can differ only at ω 's such that $P([\omega]_{\mathcal{B}}) = 0$. But the set of such ω 's, namely, $\sum_{j:P(B_j)=0} B_j$, is a set of probability zero, so we have the almost sure uniqueness.

Existence. It is clear how to proceed. We set

$$(E^{\mathcal{B}}X)(\omega) \coloneqq \begin{cases} E(X \mid [\omega]_{\mathcal{B}}) & \text{if } P([\omega]_{\mathcal{B}}) > 0\\ 0(\text{say, or } EX) & \text{if } P([\omega]_{\mathcal{B}}) = 0. \end{cases}$$

Our $E^{\mathcal{B}}X$ is constant over each cell B_i of the partition and therefore \mathcal{B} -measurable. Moreover, for any $B = \sum_{j \in J} B_j \in \mathcal{B}$, we have, with $\tilde{J} \coloneqq \{j \in J : P(B_j) > 0\}$,

$$\int_{B} X dP = \sum_{j \in J} \int_{B_{j}} X dP = \sum_{j \in \tilde{J}} \int_{B_{j}} X dP = \sum_{j \in \tilde{J}} E(X | B_{j})P(B_{j})$$

$$= \sum_{j \in \tilde{J}} \int_{B_{j}} E(X | [\omega]_{\mathcal{B}})P(d\omega) \quad (\text{since } B_{j} = [\omega]_{\mathcal{B}} \text{ for } \omega \in B_{j})$$

$$= \sum_{j \in J} \int_{B_{j}} (E^{\mathcal{B}}X)(\omega)P(d\omega)$$

$$= \int_{B} E^{\mathcal{B}}X dP$$
(1)

provided $E^{\mathcal{B}}X$ is quasi-integrable over B. But $E^{\mathcal{B}}X$ is quasi-integrable over $\{E^{\mathcal{B}}X \ge 0\} \in \mathcal{B}$, so (1) for this event implies

$$E[(E^{\mathcal{B}}X)^{+}] = \int_{\{E^{\mathcal{B}}X \ge 0\}} E^{\mathcal{B}}X dP = \int_{\{E^{\mathcal{B}}X \ge 0\}} X dP$$
$$\leq \int_{\{E^{\mathcal{B}}X \ge 0\}} X^{+} dP \le EX^{+}.$$

Similarly, (1) implies $E[(E^{\mathcal{B}}X)^{-}] \leq EX^{-}$. Therefore $E^{\mathcal{B}}X$ is in fact quasi-integrable (in the same sense(s) as X) over the entire sample space Ω , and, in particular, quasi-integrable over each $B \in \mathcal{B}$, as required. Thus (1), i.e., (*ii*), holds in general.

Remarks 3. The general \mathcal{B} cannot be so neatly associated with a partition of Ω . To see what's involved, use \mathcal{B} to define an equivalence relation on Ω : say $\omega_1 \sim_{\mathcal{B}} \omega_2$ exactly when every $B \in \mathcal{B}$ containing ω_1 also contains ω_2 , and vice versa. Call the resulting equivalence classes \mathcal{B} -cosets, and denote by $[\omega]_{\mathcal{B}}$ the \mathcal{B} -coset containing $\omega \in \Omega$:

$$[\omega]_{\mathcal{B}} = \bigcap_{B \in \mathcal{B} : \, \omega \in B} B.$$

- **Example 4.** (a) \mathcal{B} as in "proof" 1^o. The \mathcal{B} -cosets are precisely the B_i 's, and $[\omega]_{\mathcal{B}}$ here is the same thing as before the B_i containing ω .
- (b) $\mathcal{B} = \sigma \langle T; \tilde{\mathcal{B}} \rangle$, where $T : \sigma \to \tilde{\sigma}$ for some measurable space $(\tilde{\Omega}, \tilde{\mathcal{B}})$ such that $\tilde{\mathcal{B}}$ contains all singletons. Since $\mathcal{B} = \{T^{-1}(\tilde{B}) : \tilde{B} \in \tilde{\mathcal{B}}\}$ (by definition) and since $\{T(\omega)\} \in \tilde{\mathcal{B}}$, it follows that $[\omega]_{\mathcal{B}} = T^{-1}(\{T(\omega)\})$.

The \mathcal{B} -cosets do always partition Ω , and every $B \in \mathcal{B}$ is the sum of those \mathcal{B} -cosets it contains. But the sum is in general uncountable (cf. Example(b), with $(\tilde{\Omega}, \tilde{\mathcal{B}}) = (\mathbb{R}, \mathcal{R})$); moreover, not every $[\omega]_{\mathcal{B}}$, much less every sum of \mathcal{B} -cosets, need belong to \mathcal{B} . (In Example (b), every $[\omega]_{\mathcal{B}}$, but not necessarily every sum of \mathcal{B} -cosets, belongs to \mathcal{B} .) So we cannot say $\mathcal{B} = \{\sum_{j \in J} B_j : \text{each } B_j \text{ is a } \mathcal{B}\text{-coset}\}$, and we cannot identify constancy over $\mathcal{B}\text{-cosets}$ with $\mathcal{B}\text{-measurability}$.

Also, even if $[\omega]_{\mathcal{B}}$ belongs to \mathcal{B} , it may (and in interesting cases will) have probability zero; typically all the expressive $E([\omega]_{\mathcal{B}}) \equiv \frac{\int_{[\omega]_{\mathcal{B}}} X dP}{P([\omega]_{\mathcal{B}})}$ are either meaningless $([\omega]_{\mathcal{B}} \notin \mathcal{B})$ or indeterminate $(P([\omega]_{\mathcal{B}}) = 0)$. However, if we ignore these unpleasantnesses, and go through the previous proof informally, we see that

- (a) one can intuitively think of $(E^{\mathcal{B}}X)(\omega)$ as $E(X \mid [\omega]_{\mathcal{B}})$, the "average value of X over the smallest event in \mathcal{B} containing ω ", and
- (b) conditions (i) and (ii) in the proposition express the global behavior of the locally (un-) defined function $E(X | [\cdot]_{\mathcal{B}})$.

As an aid to the intuition, we may sometimes denote the value of an $E^{\mathcal{B}}X$ at ω by $E(X \mid [\omega]_{\mathcal{B}})$. But keep in mind that this quantity is not defined unless $[\omega]_{\mathcal{B}} \in \mathcal{B}$ and $P([\omega]_{\mathcal{B}}) > 0$, in which case it is in fact that the value of any $E^{\mathcal{B}}X$ at ω .

- **Example 5.** (1) $\mathcal{B} = \{\phi, \Omega\}, E^{\mathcal{B}}X = (EX)I_{\Omega}$ (uniquely). $E^{\{\phi, \Omega\}}X$ is the ultimate *smoothing* of X – to a constant function.
- (2) $\mathcal{B} = \{ \sum_{j \in J} B_j : J \subset \{1, 2, 3\} \}$ with $P(B_j) > 0$ for all $j, E^{\mathcal{B}}X = \sum_{j=1}^3 E(X \mid B_j)I_{B_j}$ (uniquely). $E^{\mathcal{B}}X$ is a partial *smoothing* of X.
- (3) Same \mathcal{B} as (2), except $P(B_3) = 0$. General $E^{\mathcal{B}}X = \sum_{j=1}^{2} E(X \mid B_j)I_{B_j} + cI_{B_3}$, c arbitrary.
- (4) $\Omega = [-1, +1], \mathcal{A} = \{\text{Borels}\}, dP = fd\lambda, \lambda = \text{Lebesgue measure, } 0 < f < \infty \text{ (for convenience). } \mathcal{B} = \sigma \langle T \rangle, \text{ where } T : \Omega \to [0, 1] \text{ is defined by } T(\omega) = |\omega|. (E^{\mathcal{B}}X)(\omega) = X(\omega) \frac{f(\omega)}{f(\omega) + f(-\omega)} + X(-\omega) \frac{f(-\omega)}{f(\omega) + f(-\omega)} \text{ (at least for } X \ge 0). E^{\mathcal{B}}X \text{ is the smoothing of } X \text{ to an even function.}$

One easily checks that $\mathcal{B} = \{A \in \mathcal{A} : A = -A\}$, where $-A \coloneqq \{-a : a \in A\}$. Let $X \ge 0$. We have $[\omega]_{\mathcal{B}} = \{-\omega, \omega\}$ (recall Example (b) above), which has probability zero under P. But given that $T(\omega) = t$, one intuitively feels that $\omega = t$ with probability $\frac{f(t)}{f(t)+f(-t)}$ and $\omega = -t$ with probability $\frac{f(-t)}{f(t)+f(-t)}$. Hence $E(X \mid [\omega]_{\mathcal{B}})$ "ought" to be $X(\omega)\frac{f(\omega)}{f(\omega)+f(-\omega)} + X(-\omega)\frac{f(-\omega)}{f(\omega)+f(-\omega)} \rightleftharpoons Z(\omega)$. So we propose Z as a candidate for $E^{\mathcal{B}}X$.

Z is \mathcal{B} -measurable because it is \mathcal{A} -measurable and even $(Z(\omega) = Z(-\omega) \ \forall \omega \in \Omega)$. Moreover, if $0 \leq U$ is \mathcal{B} -measurable, i.e., \mathcal{A} -measurable and even, then we have

$$\begin{split} \int_{\Omega} U(\omega) Z(\omega) P(\mathrm{d}\omega) &= \int U(\omega) \Big[X(\omega) \frac{f(\omega)}{f(\omega) + f(-\omega)} + X(-\omega) \frac{f(-\omega)}{f(\omega) + f(-\omega)} \Big] f(\omega) \mathrm{d}\omega \\ &= \int U(\omega) X(\omega) \frac{f(\omega) f(\omega)}{f(\omega) + f(-\omega)} \mathrm{d}\omega + \int U(\omega) X(-\omega) \frac{f(-\omega) f(\omega)}{f(\omega) + f(-\omega)} \mathrm{d}\omega \\ &= \int U(\omega) X(\omega) \frac{f(\omega) f(\omega)}{f(\omega) + f(-\omega)} \mathrm{d}\omega + \int U(-\omega) X(\omega) \frac{f(\omega) f(-\omega)}{f(-\omega) + f(\omega)} \mathrm{d}\omega \\ &= \int U(\omega) X(\omega) \frac{f(\omega)}{f(\omega) + f(-\omega)} \Big[f(\omega) + f(-\omega) \Big] \mathrm{d}\omega \\ &= \int U(\omega) X(\omega) f(\omega) \mathrm{d}\omega = \int U(\omega) X(\omega) P(\mathrm{d}\omega) \end{split}$$

It follows (take $U = I_B, B \in \mathcal{B}$) that our Z is indeed a conditional expectation of X given \mathcal{B} . Later on we shall develop a machine which will crank out Z for $E^{\mathcal{B}}X$ automatically.

Basic properties of $E^{\mathcal{B}}X$:

Note. Whenever we write $E^{\mathcal{B}}X$, we automatically assure X P-quasi-integrable (unless a special fuss is made), and we always view $E^{\mathcal{B}}X$ as an arbitrary but fixed version of the conditional expectation of X given \mathcal{B} .

Smoothing-type properties :

(S1)
$$E^{\mathcal{B}}X \in \begin{cases} Q_+\\ Q_-\\ L^1 \end{cases}$$
 iff $X \in \begin{cases} Q_+\\ Q_-\\ L^1 \end{cases}$. $EE^{\mathcal{B}}X = EX$.

(S2) If X is \mathcal{B} -measurable, then $E^{\mathcal{B}}(XY) \stackrel{\text{a.s.}}{=} X E^{\mathcal{B}}Y$ and, in particular, $E^{\mathcal{B}}X \stackrel{\text{a.s.}}{=} X$.

(S3) If $\mathcal{B}_1 \subset \mathcal{B}_2$, then $E^{\mathcal{B}_1}(E^{\mathcal{B}_2}X) \stackrel{\text{a.s.}}{=} E^{\mathcal{B}_1}X \stackrel{\text{a.s.}}{=} E^{\mathcal{B}_2}(E^{\mathcal{B}_1}X)$.

Expectation operator type properties :

(E1) $E^{\mathcal{B}}1 \stackrel{\text{a.s.}}{=} 1.$

(E2)
$$E^{\mathcal{B}}(cX) = cE^{\mathcal{B}}X; E^{\mathcal{B}}(X+Y) \stackrel{\text{a.s.}}{=} E^{\mathcal{B}}X + E^{\mathcal{B}}Y \text{ if } X \text{ and } Y \text{ are both in } \begin{cases} Q_+\\ Q_- \end{cases}$$
.

- (E3) (a) If $X_1 \leq X_2$, then $E^{\mathcal{B}}X_1 \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}X_2$. In particular, if $0 \leq X$ then $0 \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}$.
 - (b) $(E^{\mathcal{B}}X)^+ \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}(X^+); (E^{\mathcal{B}}X)^- \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}(X^-); |E^{\mathcal{B}}X| \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}|X|.$
 - (c) If $X_1 \stackrel{\text{a.s.}}{<} X_2$ and at least one of X_1 and X_2 is integrable, then $E^{\mathcal{B}} X_1 \stackrel{\text{a.s.}}{<} E^{\mathcal{B}} X_2$.

(E4) (MCT) If $X_n \uparrow X$, then $E^{\mathcal{B}}X_n \stackrel{\text{a.s.}}{\uparrow} E^{\mathcal{B}}X$ over $\cup_{m \ge 1} \{E^{\mathcal{B}}X_m > -\infty\}$. If $X_n \downarrow X$, then $E^{\mathcal{B}}X_n \stackrel{\text{a.s.}}{\downarrow} E^{\mathcal{B}}X$ over $\cup_{m \ge 1} \{E^{\mathcal{B}}X_m < \infty\}$.

(E5) (Fatou) If
$$E(\inf_n X_n) > -\infty$$
, then $E^{\mathcal{B}}(\liminf_n X_n) \stackrel{\text{a.s.}}{\leq} \liminf_n E^{\mathcal{B}} X_n$.
If $E(\sup_n X_n) < \infty$, then $\limsup_n E^{\mathcal{B}} \stackrel{\text{a.s.}}{\leq} X_n E^{\mathcal{B}}(\limsup_n X_n)$.

(E6) (DCT) If $E(\sup_n |X_n|) < \infty$ and $\lim_n X_n$ exists a.s., then $E^{\mathcal{B}}(\lim_n X_n) \stackrel{\text{a.s.}}{=} \lim_n E^{\mathcal{B}}X_n$.

(E7) If X and \mathcal{B} are independent, then $E^{\mathcal{B}}X \stackrel{\text{a.s.}}{=} (EX)I_{\Omega}$.

Conditional expectation given a measurable function :

Motivation. So far we have considered conditioning relative to sub- σ -algebras \mathcal{B} . There is a closely related notion, involving conditioning by a measurable function. Let $T : (\Omega, \mathcal{A}) \to (\mathcal{T}, \mathcal{C})$ be measurable, and set $\mathcal{B} \equiv \mathcal{B}_T := T^{-1}(\mathcal{C})$. Look at $E^{\mathcal{B}_T}X$. This is a \mathcal{B}_T -measurable function and therefore (by the Factorization Theorem) can be written as a measurable function of T, say, as

$$E(X \mid T) \circ T,$$

where $E(X | T) : \mathcal{T} \to \overline{\mathbb{R}}$ is \mathcal{C} -measurable. (Intuitively, E(X|T)(t) = "the constant value of $E^{\mathcal{B}_T}X$ over all the \mathcal{B}_T -coset $\{T = t\}$ ".) Moreover, we have

$$\int_{\{T \in C\}} X \, \mathrm{d}P = \int_{\{T \in C\}} E^{\mathcal{B}_T} X \, \mathrm{d}P = \int_{\{T \in C\}} E(X|T) \circ T \, \mathrm{d}P$$
$$= \int_C E(X|T) \, \mathrm{d}(PT^{-1}) \quad \text{(change of variable)}$$
(2)

for all $C \in \mathcal{C}$. It's easy to check that E(X|T) is PT^{-1} -essentially uniquely determined by (2).

For the sake of intuition, we sometimes write E(X|T)(t) as E(X|T=t).

Definition 6. Let X be P-quasi-integrable, and let $T : \Omega \to \mathcal{T}$ be measurable between the σ -fields \mathcal{A} and \mathcal{C} . Anyone of the PT^{-1} -equivalent \mathcal{C} -measurable functions $E(X|T) : \mathcal{T} \to \overline{\mathbb{R}}$ such that

$$\int_{\{T \in C\}} X \, \mathrm{d}P = \int_C E(X|T) \mathrm{d}(PT^{-1}) \quad \forall C \in \mathcal{C}$$

is called a conditional expectation of X given T.

Correspondence between $E^{\downarrow}X$ and E(X|T) :

(a) If $\mathcal{B}_T \coloneqq \sigma \langle T \rangle = T^{-1}(\mathcal{C})$, then

$$E^{\mathcal{B}_T} = E(X|T) \circ T.$$

(b) If $T \coloneqq$ (identity mapping on Ω) and $(\mathcal{T}, \mathcal{C}) \coloneqq (\Omega, \mathcal{B})$, then

$$E^{\mathcal{B}}T = E(X|T).$$

Warning. Often E(X|T) is used as the notation for $E^{\mathcal{B}_T}X$.

Proofs :

Proof. $2^{\underline{O}}$ of basic proposition.

Uniqueness. It suffices to show that if Y and Z are \mathcal{B} -measurable and P-quasiintegrable and $\int_B Y \, \mathrm{d}P \leq \int_B Z \, \mathrm{d}P \, \forall B \in \mathcal{B}$, then $Y \leq Z$ a.s. For this, consider the event $B := \{Z < t \leq Y\} \in \mathcal{B}$. We have

$$tP(\mathcal{B}_t) \le \int_{B_t} Y \,\mathrm{d}P \le \int_{B_t} Z \,\mathrm{d}P < tP(B_t),$$

a contradiction, unless $P(B_t) = 0$. But $\{Z < Y\} = \bigcup_{t \text{ rational}} B_t$, so $P\{Z < Y\} = 0$, i.e., $Y \leq Z$ a.s.

Existence. If we had $E^{\mathcal{B}}X$, we would expect (using the "build-'em-up" technique) that $\int U(X - E^{\mathcal{B}}X) dP = 0$, i.e., $(X - E^{\mathcal{B}}X) \perp U$, for \mathcal{B} -functions U. [Indeed, with $U = I_B$, $B \in \mathcal{B}$, this is required property (*ii*).] This suggests what to do:

Step 1. $X \in L^2(\Omega, \mathcal{A}, P)$. Check that $L^2(\Omega, \mathcal{B}, P)$ is a Hilbert subspace of $L^2(\Omega, \mathcal{A}, P)$. By the basic projection theorem for Hilbert spaces, there is a vector, say, Z, in $L^2(\mathcal{B})$ such that $||X - Z||_2 = \inf_{Y \in L^2(\mathcal{B})} ||X - Y||_2$. This Z satisfies

$$(X - Z) \perp U \quad \forall U \in L^2(\mathcal{B}).$$
(3)

We claim that Z serves as $E^{\mathcal{B}}X$: Z is \mathcal{B} -measurable, $Z \in L^2 \subset L^1 \subset Q$, and by (3) $\int_B Z \, \mathrm{d}P = \int_B X \, \mathrm{d}P$ for each $B \in \mathcal{B}$.

Step 2. $X \ge 0$. Define $X_n = X_{\wedge n} \in L^2(\Omega, \mathcal{A}, P)$. Use Step 1 to determine $E^{\mathcal{B}}X_n - \mathcal{B}$ -measurable and satisfying

$$\int_{B} E^{\mathcal{B}} X_n \,\mathrm{d}P = \int_{B} X_n \,\mathrm{d}P. \tag{4}$$

Since $0 \leq X_n \leq X_{n+1}$, it follows (cf. pf. of uniqueness) that $0 \leq E^{\mathcal{B}}X_n \leq E^{\mathcal{B}}X_{n+1}$ a.s. Thus the $(E^{\mathcal{B}}X_n)$'s increases on a set of probability one; in fact (why?), they may be taken to increase everywhere. We claim $\lim_n \uparrow E^{\mathcal{B}}X_n$ serves as $E^{\mathcal{B}}X$. Clearly, $\lim_n \uparrow E^{\mathcal{B}}X_n$ is \mathcal{B} -measurable and P-quasi-integrable (in fact, ≥ 0). Apply the MCT to (4) to get

$$\int_{B} (\lim_{n} \uparrow E^{\mathcal{B}} X_{n}) \, \mathrm{d}P = \lim_{n} \uparrow \int_{B} E^{\mathcal{B}} X_{n} \, \mathrm{d}P = \lim_{n} \uparrow \int_{B} X_{n} \, \mathrm{d}P$$
$$= \int_{B} (\lim_{n} \uparrow X_{n}) \, \mathrm{d}P = \int_{B} X \, \mathrm{d}P \quad \text{for each } B \in \mathcal{B}.$$

Step 3. $X \in Q^-$. Use Step 2 to determine $E^{\mathcal{B}}(X^+)$ and $E^{\mathcal{B}}(X^-)$. Observe $E(E^{\mathcal{B}}(X^-)) = E(X^-) < \infty$ (consider $B = \Omega$). In particular, $E^{\mathcal{B}}(X^-) < \infty$ a.s.; without loss of generality $E^{\mathcal{B}}(X^-) < \infty$ everywhere. We claim that $E^{\mathcal{B}}(X^+) - E^{\mathcal{B}}(X^-)$ serves as $E^{\mathcal{B}}X$. Clearly, $E^{\mathcal{B}}(X^+) - E^{\mathcal{B}}(X^-)$ is well defined, \mathcal{B} -measurable, and quasi-integrable (since $E^{\mathcal{B}}(X^-) \in L^1$), and for each $B \in \mathcal{B}$

$$\int_{B} \left(E^{\mathcal{B}}(X^{+}) - E^{\mathcal{B}}(X^{-}) \right) \mathrm{d}P = \int_{B} E^{\mathcal{B}}(X^{+}) \mathrm{d}P - \int_{B} E^{\mathcal{B}}(X^{-}) \mathrm{d}P \quad (\text{since } E^{\mathcal{B}}(X^{-}) \in L^{1})$$
$$= \int_{B} X^{+} \mathrm{d}P - \int_{B} X^{-} \mathrm{d}P = \int_{B} X \mathrm{d}P.$$

Notes.

- (a) The constructions in Steps 2 and 3 are entirely analogous to what we did in developing (unconditional) expectation.
- (b) If $X \in L^2(\mathcal{A})$, we have seen that $E^{\mathcal{B}}X$, the \mathcal{B} -smoothing of X, is obtained by moving X as little as possible.

Proofs of properties of conditional expectation :

- (E1) Simple.
- (S1) Simple.
- (E2) First part simple. If both X and Y are in Q_- , then by (S1) so are $E^{\mathcal{B}}X$ and $E^{\mathcal{B}}Y$, and so are X + Y and $E^{\mathcal{B}}X + E^{\mathcal{B}}Y$. The last is \mathcal{B} -measurable, and for each $B \in \mathcal{B}$

$$\int_{B} (E^{\mathcal{B}}X + E^{\mathcal{B}}Y) \,\mathrm{d}P = \int_{B} E^{\mathcal{B}}X \,\mathrm{d}P + \int_{B} E^{\mathcal{B}}Y \,\mathrm{d}P = \int_{B} X \,\mathrm{d}P + \int_{B} Y \,\mathrm{d}P = \int_{B} (X+Y) \,\mathrm{d}P.$$

(E3) (a) Proved in uniqueness part of proof 2° .

- (b) For example, $X \leq X^+$ and so by (a) $E^{\mathcal{B}}X \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}(X^+)$. But $E^{\mathcal{B}}(X^+) \stackrel{\text{a.s.}}{\geq} 0$, so $(E^{\mathcal{B}}X)^+ \stackrel{\text{a.s.}}{\leq} E^{\mathcal{B}}(X^+)$.
- (c) Taking $X = X_2 X_1$ and using (E2), it suffices to show that if $0 \stackrel{\text{a.s.}}{<} X$, then $0 \stackrel{\text{a.s.}}{<} E^{\mathcal{B}}X$. Actually, we do a bit more: If $x \ge 0$, then $\{E^{\mathcal{B}}X = 0\} \stackrel{\text{a.s.}}{\subset} \{X = 0\}$, because $0 = \int_{\{E^{\mathcal{B}}X=0\}} E^{\mathcal{B}}X = \int_{\{E^{\mathcal{B}}X=0\}} X$.
- (S2) Case 1: $X \ge 0, Y \ge 0$. Since $\int U E^{\mathcal{B}} Y = \int U Y$ holds for \mathcal{B} -indicators U, it holds (build-'em-up !) for non-negative \mathcal{B} -functions U. Hence for $B \in \mathcal{B}$

$$\int_{B} X E^{\mathcal{B}} Y = \int (I_B X) E^{\mathcal{B}} Y = \int (I_B X) Y = \int_{B} X Y.$$

Case 2: XY and Y are both quasi-integrable. Note $XY = (X^+ - X^-)(Y^+ - Y^-) = X^+Y^+ + X^-Y^- + (-X^+Y^-) + (-X^-Y^+)$, where the four r.v.'s here have disjoint supports. This, e.g., if $XY \in Q_-$, the all four r.v.'s are in Q_- , and (E2) gives (a.s. throughout)

$$E^{\mathcal{B}}(XY) = E^{\mathcal{B}}(X^{+}Y^{+}) + E^{\mathcal{B}}(X^{-}Y^{-}) - E^{\mathcal{B}}(X^{+}Y^{-}) - E^{\mathcal{B}}(X^{-}Y^{+})$$

= $X^{+}E^{\mathcal{B}}Y^{+} + X^{-}E^{\mathcal{B}}Y^{-} - X^{+}E^{\mathcal{B}}Y^{-} - X^{-}E^{\mathcal{B}}Y^{+}$
= $(X^{+} - Y^{-})(E^{\mathcal{B}}Y^{+} - E^{\mathcal{B}}Y^{-})$
= $XE^{\mathcal{B}}Y.$

(S3) Simple.

(E4) Put $B_{c,m} = \{ E^{\mathcal{B}} X_m \ge c \} \in \mathcal{B} \quad (0 > c > -\infty).$ Now $X_n \uparrow X$

$$\Rightarrow X_n I_{B_{c,m}} \uparrow X I_{B_{c,m}} \Rightarrow \text{ for } B \in \mathcal{B}, \int_B \lim_n^{(\text{a.s.})} \uparrow \underbrace{E^{\mathcal{B}}(X_n I_{B_{c,m}})}_{\geq c \text{ for } n \geq m \text{ (a.s.) [use (E3), (S2)]}}$$

$$= \lim_n \uparrow \int_B E^{\mathcal{B}}(X_n I_{B_{c,m}}) \quad \text{by MCT}$$

$$= \lim_n \uparrow \int_B X_n I_{B_{c,m}} = \int_B \lim_n \uparrow (X_n I_{B_{c,m}}) = \int_B X I_{B_{c,m}} \quad \text{by MCT}$$

$$\Rightarrow E^{\mathcal{B}}(X; B_{c,m}) \uparrow E^{\mathcal{B}}(X; B_{c,m}) \text{ a.s. by uniqueness of conditional expectation}$$

$$\Rightarrow I_{B_{c,m}} E^{\mathcal{B}} X_n \uparrow I_{B_{c,m}} E^{\mathcal{B}} X \text{ a.s. by (S2), i.e. } E^{\mathcal{B}} X_n \stackrel{\text{a.s.}}{\uparrow} E^{\mathcal{B}} X \text{ over } B_{c,m}.$$

But $\cup_{m\geq 1} \{ E^{\mathcal{B}} X_m > -\infty \} = \bigcup_{m\geq 1} \bigcup_{c \text{ rational }} B_{c,m}.$

(E5)-(E6) Repeat unconditional proofs.

(E7) Use $E(I_BX) = P(B)EX$ for $B \in \mathcal{B}$.

10	-	-	-	
н				
н				