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Chapter 1

Preliminaries

1.1 Probability

Probability space (Ω,F , P ). Ω is sample space, set of all possible outcomes of
a random experiment. Event E is a subset of Ω, said to occur if the outcome of
the experiment is an element of E. F is a collection of events, and F is σ-field.

Remark.

F is called a σ-field if the following holds.

(i) Ω ∈ F .

(ii) if A,B ∈ F , then A\B ∈ F .

(iii) if Ai ∈ F , i = 1, 2, · · · , then
⋃∞
i=1 ∈ F .

Note. F = {Ω, φ} is smallest σ-field.

For each E ∈ F , a number P (E) is defined (P : F → R mapping), satisfying
the following.

(i) 0 ≤ P (E) ≤ 1.

(ii) P (Ω) = 1.

(iii) For any sequences {Ei}∞i=1 ⊂ F , which are mutually exclusive,

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei)

Note. P (A) = 1 ⇔ A holds almost surely (a.s.).
P (A∩B) = P (A)P (B) ⇔ A and B are independent.

1
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Simple facts

1. If E ⊆ F , then P (E) ≤ P (F ).

2. P (Ec) = P (Ω\E) = 1− P (E).

3. If {Ei}ni=1 are mutually exclusive,

P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei)

4. P (
⋃∞
i=1) ≤

∑∞
i=1 P (Ei) (Boole’s Inequality)

{En}∞n=1 is increasing if En ⊆ En+1 ∀n.
decreasing if En ⊇ En+1 ∀n.

Let {En}∞n=1 be increasing. Define limn→∞En ,
⋃∞
n=1En.

decreasing. Define limn→∞En ,
⋂∞
n=1En.

Proposition 1.1.1. If {En}∞n=1 is either increasing or decreasing, then

P
(

lim
n→∞

En

)
= lim
n→∞

P (En)

Proof. Suppose {En}∞n=1 is increasing.

Define F1 = E1

Fn = En\En−1 = En ∩ Ecn−1, n = 2, 3, · · ·

{Fn}∞n=1 are mutually exclusive, and

n⋃
i=1

Fi =
n⋃
i=1

Ei , n = 1, 2, · · ·

P
(

lim
n→∞

En

)
= P

( ∞⋃
i=1

Ei

)
= P

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

P (Fi)

= lim
n→∞

n∑
r=1

P (Fi) = lim
n→∞

P (
n⋃
i=1

Fi)

= lim
n→∞

P (En)
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Example 1.1.1. Consider a population consisting of individuals able to pro-
duce offspring of the same kind. The number of individuals initially present,
denoted by X0, is called the size of the zeroth generation. All offspring of the
zeroth generation constitute the first generation and their number is denoted
by X1. In general, let Xn denote the size of the nth generation.

Let En = {Xn = 0}, n = 0, 1, 2, · · · . En ↑ or En ⊆ En+1.
If limn→∞ P (En) exists,

lim
n→∞

P (En) = P
(

lim
n→∞

En

)
= P

( ∞⋃
n=1

{Xn = 0}

)
= P (the population ever dies out)

Theorem 1.1.1. (Borel-Cantelli lemma) Let {En}∞n=1 denote a sequence of
events. If

∑∞
i=1 P (Ei) <∞, then

P

( ∞⋂
n=1

∞⋃
i=n

Ei

)
= 0

Proof. Let Fn ,
⋃∞
i=nEi. Fn ↓.

P

( ∞⋂
n=1

Fn

)
= P

(
lim
n→∞

Fn

)
= lim
n→∞

P (Fn)

= lim
n→∞

P

( ∞⋃
i=n

Ei

)
≤ lim
n→∞

∞∑
i=n

P (Ei) = 0

Note.
∞⋂
n=1

∞⋃
i=n

Ei = lim sup
i→∞

Ei = lim
i→∞

Ei

Remark.
∞⋂
n=1

∞⋃
i=n

Ei = {an infinite number of Ei occurs}

1.2 Random Variable

A random variable (r.v.) X is a mapping from Ω to R, satisfying {X ≤ a} ∈ F ,
∀a ∈ R. A distribution function F of the r.v. X, F (x) , P (X ≤ x), ∀x ∈ R,
and F (x) , 1− F (X) = P (X > x).
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A r.v. X is said to be discrete if its set of possible value is countable.
In this case

F (x) =
∑
y≤x

P (X = y) ∀x ∈ R

A r.v. X is said to be continuous if there is a function f(x) called the prob-
ability density function, such that

F (a) = P (X ≤ a) =
∫ a

−∞
f(x)dx ∀a ∈ R

f(x) =
dF (x)
dx

= F ′(x)

The joint distribution function F of two r.v.s X and Y is

F (x, y) = P (X ≤ x, Y ≤ y) ∀(x, y) ∈ R2

Let Yn ↑ ∞, En , {X ≤ x, Y ≤ yn} ↑.

{X ≤ x} =
∞⋃
n=1

(X ≤ x, Y ≤ yn)

FX(x) = P (X ≤ x) = P (
∞⋃
n=1

En) = lim
n→∞

P (X ≤ x, Y ≤ yn) = lim
n→∞

F (x, yn)

Two r.v.s X and Y are called independent if

F (x, y) = FX(x)FY (y)

X and Y are called jointly continuous if there exits a function f(x, y) called
the joint probability density function, such that,

P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
f(u, v)du dv ∀(x, y) ∈ R2

1.3 Mathematic Expectation

The mathematical expectation or mean of a r.v. X, E[X], is defined by

E[X] ,
∫ ∞

−∞
xdF (x) =

{∑
x xP (X = x) if X is discrete.∫∞

−∞ xf(x)dx if X is continuous.

Let h : R → R. The (measurable) function h(X) is r.v.

E[h(X)] =
∫ ∞

−∞
h(x)dF (x) =

{∑
x h(x)P (X = x) if X is discrete.∫∞

−∞ h(x)f(x)dx if X is continuous.
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h : Rn → R

E[h(X1, X2, · · · , Xn)] =
∫

Rn

h(x1, x2, · · · , xn)dF (x1, x2, · · · , xn)

The variance of r.v. X

Var(X) , E{(X − E[X])2} = E[X2]− (E[X])2

Standard deviation σX =
√

Var(X).
The covariance of two random variable X and Y

cov(X,Y ) , E[(X − E(X))(Y − E(Y ))]
= E[XY ]− E[X]E[Y ]

X and Y are called uncorrelated if cov(X,Y ) = 0 or E[XY ] = E[X]E[Y ].

Properties of expectation and variance

1. E[αX + βY ] = αE[X] + βE[Y ] ∀α, β ∈ R.

2.

Var(
n∑
i=1

Xi) =
n∑
i=1

n∑
j=1

cov(Xi, Xj)

=
n∑
i=1

Var(Xi) +
∑
i 6=j

cov(Xi, Xj)

3. E[XY ] = E[X]E[Y ], if X and Y are independent.

1.4 Moment Generating Function

The moment generating function of a r.v. X

ψX(t) ≡ ψ(t) , E[etX ] =
∫ ∞

−∞
etxdF (x), t ∈ R

ψ′(t) =
∫ ∞

−∞
xetxdF (x) = E[XetX ] ψ′(0) = E[X]

ψ′′(t) =
∫ ∞

−∞
x2etxdF (x) = E[X2etX ] ψ′′(0) = E[X2]

Remark. ψ(n)(0) = E[Xn], n ≥ 1
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The moment generating function of r.v.s X1, X2, · · · , Xn

ψ(t1, t2, · · · , tn) , E
[
e

Pn
t=1 tiXi

]
Example 1.4.1. X1 ∼ N(µ1, σ

2
1), X2 ∼ N(µ2, σ

2
2).

X1 and X2 are independent.

ψX1+X2(t) = E[et(X1+X2)] = E[etX1etX2 ] = E[etX1 ]E[etX2 ]

= ψX1(t)ψX2(t) = e(µ1+µ2)t +
σ2

1 + σ2
1

2
t2

⇒ X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Define the characteristic function of X,

φX(t) = φ(t) = E[eitx] =
∫ ∞

−∞
eitxdF (x)

where i =
√
−1.

Note. eiθ = cos θ + i sin θ

Remark. φ always exists and uniquely determines the distribution of X.

The joint characteristic function of X1, X2, · · · , Xn,

φ(t1, t2, · · · , tn) = E[ei
Pn

i=1 tnXn ]

1.5 Conditional Expectation

P (E1|E2) =
P (E1 ∩ E2)
P (E2)

∀E1, E2 ∈ F with P (E2) > 0

Remark. If P (E1 ∩ E2) = P (E1)P (E2), then P (E1|E2) = P (E1).

Let X and Y be two discrete r.v.s, the conditional probability mass function
of X given Y is defined to be,

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

provided that P (Y = y) > 0.
The continuous distribution function of X given Y = y is defined to be,

F (x|y) =
∑
z≤x

P (X = z|Y = y)

The conditional expectation of X given Y is

E(x|Y = y) =
∫
xdF (x|y) =

∑
x

P (X = x|Y = y)
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Let X and Y be jointly continuous r.v.s having joint probability density
function f(x, y). The conditional density function of X given Y = y is defined
for all y such that fY (y) > 0 by

f(x|y) =
f(x, y)
fY (y)

P (E|Y = y) =
∫
E

f(x|y)dx

The conditional distribution function of x given Y = y is

F (x|y) =
∫ x

−∞
f(z|y)dz

The conditional expectation of X given Y = y is,

E(X|Y = y) =
∫ ∞

−∞
xf(x|y)dx

Define the following r.v denoted by E[X|Y ].

E[X|Y ] = E[X|Y = y] if Y = y

Theorem 1.5.1. For all r.v.s X and Y ,

E[X] = E[E(X|Y )] =
∫ ∞

−∞
E(x|Y = y)dFY (y)

Corollary 1.5.1. 1. If Y is discrete, then

E[X] =
∑
y

E(X|Y = y)P (Y = y)

2. If Y is continuous, then

E[X] =
∫ ∞

−∞
E(X|Y = y)fY (y)dy

Proof of the case when both X and Y are discrete.∑
y

E(X|Y = y) =
∑
y

∑
x

xP (X = x|Y = y)P (Y = y)

=
∑
y

∑
x

xP (x = x, Y = y)

=
∑
x

x

[∑
y

P (X = x, Y = y)

]
=
∑
x

xP (X = x)

= E[X]
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Corollary 1.5.2. 1.

E

[
n∑
i=1

Xi

∣∣∣Y = y

]
=

n∑
i=1

E[Xi|Y = y]

2.

E

[
n∑
i=1

Xi

∣∣∣Y ] =
n∑
i=1

E[Xi|Y ]

Corollary 1.5.3. Let A ∈ F and Y be a r.v., then

P (A) =
∫ ∞

−∞
P (A|Y = y)dFY (y)

Proof. Define a r.v. X by

X =

{
1 if A occur
0 otherwise

Note. X = 1A = χA (indicator function)

P (A) = E[X]
P (A|Y = y) = E[X|Y = y]

Note. P y(A) = P (A|Y = y)
Ey(X) = E(X|Y = y)

Theorem 1.5.2. For all r.v.s X,Y,W , we have

E[X|W ] = E[E(X|W,Y )|W ]
= E[E(X|W )|W,Y ]

Example 1.5.1. A miner is trapped in a mine containing three doors. The first
door leads to a tunnel that takes him to safety after two hours of travel. The
second door leads to a tunnel that returns him to the mine after three hours
of travel. The third door leads to a tunnel that returns him to the mine after
five hours. Assuming that the miner is at all times equally likely to choose any
one of the doors. What are the expected time and its variance when the miner
reaches safety?

X : time when the miner reaches safety.
Y : # of door be chosen.



1.6. EXPONENTIAL DISTRIBUTION 9

E[etx] =
3∑
i=1

E[etx|Y = i]P (Y = i)

E[etx|Y = 1] = e2t

E[etx|Y = 2] = E[et(3+x
′)] = e3tE[etx]

E[etx|Y = 3] = e5tE[etx]

E[etx] =
1
3
(e2t + e3tE[etx] + e5tE[etx]))

E[etx] =
E2t

3− e3t − e5t
= ψX(t)

E[X] = ψ′(0) = 10 (hrs)

Var[x] = E[X2]− (Ex)2 = ψ′′(0)− 100

1.6 Exponential Distribution

A continuous r.v. X ≥ 0 is called to have an exponential distribution with
parameter λ > 0 if its density function is

f(x) =

{
λe−λx x ≥ 0
0 x < 0

or the distribution function is

F (x) =

{
1− e−λx x ≥ 0
0 x < 0

ψ(t) = E[etx] =
∫ ∞

0

etxλe−λxdx =
λ

λ− t

E[x] = ψ′(0) =
1
λ

Var[x] =
1
λ2

Recall

F (t) = 1− F (t) = P (X > t) = e−λt

F (t+ s) = F (t)F (s) ∀t, s ≥ 0
P (X > t+ s) = P (X > t)P (X > s)

⇔ P (X > s) =
P (X > t+ s)
P (X > t)

=
P (X > t+ s,X > t)

P (X > t)
= P (X > t+ s|X > t) ∀t, s > 0 (ageless or memoryless)
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Example 1.6.1. Consider a bank having two tellers, and suppose that customer
A enters the bank he discovers that B is being served by one of the tellers and C
by the other. Suppose that A will be served as soon as either B or C leaves. If
the amount of time a teller spends with a customer is exponentially distributed
with mean 1/λ, what is the probability that, of the three customers, A is the
last to leave the bank?

If B and C are independent, the probability is 1/2.

Theorem 1.6.1. The exponential distribution is the only memoryless nonneg-
ative r.v. whose distribution function is right continuous.

Proof. Let g(t) : P (X > t). Then g(t+ s) = g(t)g(s) ∀t, s ≥ 0

g(
m

n
) = g(

1
n

)g(
1
n

) · · · g( 1
n

)︸ ︷︷ ︸
m

= [g(
1
n

)]m = g(1)
m
n

g(x) = g(1)x ∀ rational number x
⇓

g(x) = g(1)x ∀x ∈ R+

= ex ln g(1)

P (X ≤ x) = 1− e−λx where λ = − ln g(1).

Consider a continuous r.v. X ≥ 0 having density f and distribution F =
1− F . The failure (or hazard) rate function,

λ(t) =
f(t)
F (t)

=
−F ′t
F (t)

Interpretation.

P (x ∈ (t, t+ dt)|x > t) =
P (x ∈ (t, t+ dt))

P (X > t)
=
f(t)dt
F (t)

= λ(t)dt

λ(t) : the probability intensity that a t-year old item will fail.
For an exponential r.v.

λ(t) =
f(t)
F (t)

=
λe−λt

e−λt
= λ

λ(t) = − d

dt
lnF (t)

lnF (t)− lnF (0) = −
∫ t

0

λ(s)ds

F (0) = P (X ≥ 0) = 1

⇒ F (t) = e−
R t
0 λ(s)ds

⇒ F (t) = 1− e−
R t
0 λ(s)ds
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1.7 Some Important Inequalities

Lemma 1.7.1. (Markov’s inequality) If X ≥ 0 is r.v., then ∀a > 0

P (x ≥ a) ≤ E[X]
a

Proof.

a1(x≥a) ≤ x (a.s.)
E[a1(x≥a)] ≤ E[X]
aP (x ≥ a) ≤ E[x]

Remark. P (|x| ≥ a) ≤ E[|X|]
a

Proposition 1.7.1. (Chemoff bound) Let X be a r.v. with M(t) = E[etx].
Then ∀a > 0,

P (X ≥ a) ≤ e−atM(t) ∀t > 0

P (X ≤ a) ≤ e−atM(t) ∀t < 0

Proof of the case t > 0.

P (X ≥ a) = P (etx ≥ eta) ≤ E[etx]
eta

= e−taM(t)

Example 1.7.1. Let X be such that P (X = x) = e−λ λ
x

λ! , x = 0, 1, 2, · · · ,
M(t) = eλ(et−1). Take j > λ > 0.

P (X ≥ j) ≤ e−jteλ(et−1) ∀t > 0

Take g(t) = λet − jt, g′(t) = λet − j = 0, g′′(t) = λet > 0 ⇒ t∗ = ln i
λ .

P (X ≥ j) ≤ exp(−j ln(j/λ) + λ(eln(j/λ) − 1)) =
e−λ(λe)j

jj

Proposition 1.7.2. (Jensen’s Inequality) If f is a convex function, then

E[f(X)] ≥ f(E[X])

provided the expectation exists.
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Proof. Assume f is differentiable. Take µ = E[X]

f(X) ≥ f(µ) + f ′(µ)(X − µ)
E[f(X)] ≥ f(µ) + f ′(µ)(E[X]− µ)

= f(µ) = f(E[X])

Note.
f(x) = x2

E[X]2 ≥ (E[X])2

f(x) = xp, p ≥ 1, x ≥ 0
E[|X|p] ≥ (E|X|)p

E|X| ≤ (E|X|p)1/p ∀p ≥ 1

Proposition 1.7.3. (Hölder’s Inequality)

E|XY | ≤ (E|X|p)
1
p (E|Y |q)

1
q

∀p, q > 1 with 1
p + 1

q = 1

Proof. First we have

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0

Take f(x) = − lnx, x > 0, convex.

− ln(
1
p
ap +

1
q
bq) ≤ −1

p
ln ap − 1

q
ln bq = − ln(ab)

Take

U =
|X|

(E|X|p)
1
p

V =
|Y |

(E|Y |q)
1
q

UV ≤ Up

p
+
V q

q
=

|X|p

(E|X|p)p
+

|Y |q

(E|Y |q)p

E|UV | ≤ 1
p

+
1
q

= 1

Remark.

p = q = 2,
|E[XY ]| ≤ E|XY | ≤ (E|X|2) 1

2 (E|Y |2) 1
2

(Cauchy-Schwarz’s Inequality)
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1.8 Stochastic Process

A stochastic process X = {X(t), t ∈ T} is a collection of random variables.
T : index set. t ∈ T : time. X(t): state of the process at time t.
X is discrete-time if T is countable.
X is continuous-time if T is continuum.
ω ∈ Ω
X(t, ω): mapping from T × Ω → R.
Any realization of X is called a sample path.

X(t, ω0) : T → R

X is called to have independent increments if for all t0 < t1 < t2 < · · · < tn,
the r.v.s, X(t1) − X(t0), X(t2) − X(t1), ..., X(tn) − X(tn−1) are mutually
independent. It is said to have stationary increments if X(t+ s)−X(t) has the
same distribution for all t.
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Chapter 2

Poisson Process

2.1 Definition

A stochastic process {N(t), t ≥ 0}, said to be a counting process if it satisfies

1. N(t) ≥ 0.

2. N(t) is integer valued.

3. N(s) ≤ N(t) if s ≤ t.

4. For s < t, N(t)−N(s) equals the number of events that have occurred in
the interval (s, t].

Definition 2.1.1. A counting process N(t), t ≥ 0 is called a Poisson process
having rate λ > 0, if

(i) N(0) = 0.

(ii) N(t) has independent increments.

(iii) ∀s, t > 0,

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
where n = 0, 1, 2, · · ·

Theorem 2.1.1. Definition 2.1.1 is equivalent to the following.

(i’) N(0) = 0.

(ii’) N(t) has stationary and independent increments.

(iii’) P (N(h) = 1) = λh+ o(h).

(iv’) P (N(h) ≥ 2) = o(h).

15
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Proof of (i’) - (iv’) ⇒ (i) - (iii). Let Pn(t) = P (N(t) = n). Goal is to show

Pn(t) = e−λt
(λt)n

n!

where n = 0, 1, 2, · · ·

P0(t+ h) = P (N(t+ h) = 0)
= P ((N(t) = 0, N(t+ h)−N(t) = 0)
= P (N(t) = 0)P (N(h) = 0)
= P0(t)(1− λh) + o(h)

P0(t+ h)− P0(t)
h

= −λP0(t) +
o(h)
h

P ′0(t) = −λP0(t) +
o(h)
h

P ′0(t) = −λp0(t)
P0(0) = P (N(0) = 0) = 1

P0(t) = e−λt

For n ≥ 1,

Pn(t+ h) = P (N(t+ h) = n)
= P (N(t) = n− 1, N(t+ h)−N(t) = 1)

+ P (N(t) = n,N(t+ h)−N(t) = 0)
+ P (N(t+ h) = n,N(t+ h)−N(t) ≥ 2)

= Pn−1(t)P (N(h) = 1) + Pn(t)P (N(h) = 0) + o(h)
= Pn−1(t)λh+ Pn(t)(1− λh) + o(h)

Pn(t+ h)− P (t) = Pn−1(t)λh− Pn(t)λh+ o(h)

{
P ′n(t) = −λPn(t) + λP ′n−1(t)
Pn(0) = P (N(0) = n) = 0

2.2 Interarrival and Waiting Times

Consider a Poisson process {N(t), t > 0}.
X1: the time of the first event.
Xn: the time between the (n− 1) < t and the nth events.
Sequence of r.v.s {Xn}∞n=1: sequence of interarrival time.
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P (X1 > t) = P (N(t) = 0) = e−λt

P (X2 > t|X1 = s) = P (N(t+ s)−N(s) = 0|N(s) = 1)
= P (N(t) = 0)

= e−λt

Proposition 2.2.1. Xn, n = 1, 2, · · · , are independent identically distributed
(i.i.d.) exponential r.v.s having mean 1

λ .

Remark. λ: arrival rate.

Sn =
∑n
i=1Xi, n ≥ 1: the arrived time of the nth event, or the waiting time

until the nth event.

P (Sn ≤ t) = P (N(t) ≥ n)

=
∞∑
j=n

e−λt
(λt)j

j!
, t > 0

which upon differentiation yields that the density function

fn(t) =
∞∑
j=0

[
−λe−λt (λt)

j

j!
+ λe−λt

λj−1tj−1

(j − 1)!

]

= −λ
∞∑
j=n

e−λt
(λt)j

j!
+ λ

∞∑
j=n−1

e−λt
(λt)j

j!

= λe−λt
(λt)n−1

(n− 1)!
t ≥ 0

Note. Sn follows gamma distribution.

Another definition of the Poisson process.
Given {Xn}∞n+1 i.i.d. exponential with mean 1/λ.

Sn =
n∑
i=1

Xi

N(t) = max{n : Sn ≤ t}
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Example 2.2.1. Given 0 ≤ s < t, compute P (X1 < s|N(t) = 1).

P (X1 < s|N(t) = 1) =
P (X1 < s,N(t) = 1)

P (N(t) = 1)

=
P (N(s) = 1)P (N(t)−N(s) = 0)

P (N(t) = 1)

=
e−λt(λs) · e−λ(t−s)

e−λtλt

=
s

t

2.3 Nonhomogeneous Poisson Process

Definition 2.3.1. A counting process {N(t), t ≥ 0} is called a nonstationary
or nonhomogeneous Poisson process which intensity function λ(t), t > 0 if

1. N(0) = 0.

2. N(t) has independent increments.

3. P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h).

4. P (N(t+ h)−N(t) ≥ 2) = o(h)

Theorem 2.3.1. For a nonhomogeneous Poisson process {N(t), t ≥ 0},

P (N(t+ s)−N(t) = n) = exp
(
−
∫ t+s

t

λ(r)dr
) (∫ t+s

t
λ(r)dr

)n
n!

where n = 0, 1, 2, · · ·

2.4 Compound Poisson r.v.s and Processes

Let X1, X2, · · · be a sequence of r.v.s, i.i.d., having distribution F , and let N
be a Poisson r.v. with mean λ independent of {Xn}∞n=1.

W =
∑N
i=1Xi is called a compound Poisson r.v. with Poisson parameter λ

and component distribution F .
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ψW (t) = E
[
et

PN
i=1Xi

]
=

∞∑
n=0

E
[
et

Pn
i=1Xi

∣∣∣N = n
]
P (N = n)

=
∞∑
n=0

[
n∏
i=1

EetXi

]
e−λ

λn

n!

=
∞∑
n=0

[ψX(t)]ne−λ
λn

n!

= e−λ
∞∑
n=0

[λψX(t)]n

n!

= e−λeλψX(t) = eλ(ψX(t)−1)

ψ′W (t) = eλ(ψX(t)−1) · λψ′X(t)
E[W ] = ψ′W (0) = λψ′X [0] = λE[X]

Var[W ] = λE[X2]

Proposition 2.4.1. Let W =
∑N
i=1Xi be a compound Poisson r.v. with Pois-

son parameter λ and compound distribution F , and X be r.v. having distribution
F that is independent of W . Then for any measurable function h(x).

E[Wh(W )] = λE[Xh(W +X)]

Proof.

E[Wh(W )] =
∞∑
n=0

E[Wh(W )|N = n]P (N = n)

=
∞∑
n=0

E

[ n∑
i=1

Xih
( n∑
j=1

Xj

)]λn
n!
e−λ

= e−λ
∞∑
n=0

λn

n!

n∑
i=1

E

[
Xih

( n∑
j=1

Xj

)]

= e−λ
∞∑
n=0

λn

n!
· nE

[
Xih

( n∑
j=1

Xj

)]
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= e−λ
∞∑
n=0

λn

(n− 1)!

∫
E

[
Xnh

( n∑
j=1

Xj

)∣∣∣Xn = x

]
dF (x)

= λe−λ
∞∑
n=0

λn−1

(n− 1)!

∫
xE

[
h
(n−1∑
j=1

Xj + x
)]
dF (x)

= λe−λ
∞∑
m=0

λm

m!

∫
xE

[
h
( m∑
j=1

Xj + x
)]
dF (x)

λE[Xh(W +X)] = λ

∫
E[xh(W + x)|X = x]dF (x)

= λ

∫
xE[h(W + x)]dF (x)

= λ

∫
x

∞∑
m=0

E

[
h
( m∑
j=1

Xj + x
)∣∣∣N = n

]
P (N = m)dF (x)

= λe−λ
∞∑
m=0

∫
xE

[
h
( m∑
j=1

Xj + x
)]λm

m!
dF (x)

Proposition 2.4.2. Under the assumption of Proposition 2.4.1, we have

E[Wn] = λ

n−1∑
j=0

(
n− 1
j

)
E[W j ]E[Xn−j ], n = 1, 2, · · ·

Proof. Take h(x) = xn−1.

E[Wn] = E[Wh(W )]

= λE[X(W +X)n−1]

= λE

n−1∑
j=0

(
n− 1
j

)
W jXn−j


= λ

n−1∑
j=0

(
n− 1
j

)
E[W j ]E[Xn−j ]

Suppose now Xj ’s are positive integer valued.

P (Xj = n) = αn n = 1, 2, · · ·
Pn , P (W = n) ?
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Corollary 2.4.1.

P0 = e−λ

Pn =
λ

n

n∑
j=1

jαjPn−j n ≥ 1

Proof. P0 = P (N = 0) = e−λ. Fix n ≥ 1. Define

h(x) =

{
0 if x 6= n
1
n if x = n

=
1
n
χ{W=n}

Remark. Wh(W ) = W
1
n
χ{W=n} = χ{W=n}

Pn = P (W = n) = E[χ{W=n}] = E[Wh(W )]
= λE[Xh(W +X)]

= λ

∞∑
j=1

E[Xh(W +X)|X = j]αj h(W + j) =
1
n
χ{W+j=n}

= λ

n∑
j=1

1
n
jP (W = n− j)αj =

1
n
χ{W=n−j}

=
λ

n

n∑
j=1

jαjPn−j

Example 2.4.1. Let Xj = 1 ⇒W = N .

P (N = 0) = e−λ

Pn = P (N = n) =
λ

n

n∑
j=1

jαjPn−j

=
λ

n
Pn−1 =

λ

n
· λ

n− 1
· Pn−2 = · · · = λ

n
· λ

n− 1
· · · λ

1︸ ︷︷ ︸
n

·P0 =
λn

n!
e−λ

Definition 2.4.1. A stochastic process {X(t), t ≥ 0} is called a compound
Poisson process if X(t) =

∑N(t)
i=1 Xi, where {N(t), t > 0} is a Poisson process

and {Xi}∞i=1 is a family of i.i.d. r.v.s that independent of {N(t), t > 0}.

Example 2.4.2. An insurance company receives claims that arrive at a Poisson
rate λ. Suppose that amounts of claims form a set of i.i.d. random variables that
is independent of the claim arrival process. If X(t) denotes the total amount of
claims by time t, then {X(t), t ≥ 0} is a compound Poisson process.
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2.5 Conditional Poisson Processes

Let Λ > 0 be a r.v. having distribution G and {N(t), t > 0} be a counting
process such that given Λ = λ, {N(t), t ≥ 0} is a Poisson process having rate λ.

P (N(t+ s)−N(s) = n) =
∫ ∞

0

P (N(t+ s)−N(s)|Λ = λ)dG(λ)

=
∫ ∞

0

e−λt(λt)n

n!
dG(λ)

The processes N(t), t ≥ 0 is called a conditional Poisson process.

Note. It is not a Poisson process.

P (Λ ∈ (λ, λ+ dλ)|N(t) = n) =
P (Λ ∈ (λ, λ+ dλ,N(t) = n)

P (N(t) = n

=

e−λt

n!
(λt)ndG(λ)∫ ∞

0

e−λt(λt)n

n!
dG(λ)

⇒ P (Λ ≤ x|N(t) = n) =

∫ x

0

e−λt(λt)
n

n!
dG(λ)∫ ∞

0

e−λt(λt)n

n!
dG(λ)

Example 2.5.1. Suppose that, depending on factors not at present understood,
the average rate at which seismic shocks occur in a certain region over a given
season is either λ1 and λ2. Suppose also that it is λ1 with probability p and λ2

with probability 1−p. A simple model for such a situation would be to suppose
that {N(t), t ≥ 0} is a conditional Poisson process such that Λ is either λ1 or
λ2 with respective probabilities p and 1− p. Given n shocks in the first t time
units of a season, what is the probability that it is currently a λ1 season and
what is the distribution of the time from t until the next shock?

P (Λ = λ1|N(t) = n) =
P (N(t) = n|Λ = λ1)P (Λ = λ1)

P (N(t) = n

=
pe−λ1t

(λ1t)n

n!

pe−λ1t
(λ1t)n

n!
+ (1− p)e−λ2t

(λ2t)n

n!

=
pe−λ1t(λtt)n

pe−λ1t(λ1t)n + (1− p)−λ2t(λ2t)n

P t,n(.) , P (.|N(t) = n)
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P (time from t until next shock ≤ x︸ ︷︷ ︸
A

|N(t) = n)

= P t,n(A)

= P t,n(A|Λ = λ1)P t,n(Λ = λ1) + P t,n(A|Λ = λ2)P t,n(Λ = λ2)

=
(1− e−λ1x)peλ1t(λ1t)n + (1− e−λ2x)(1− p)e−λ2t(λ2t)n

pe−λ1t(λ1t)n + (1− p)e−λ2t(λ2t)n

2.6 Introduction of Renewal Processes

Let {Xn, n = 1, 2, · · · } be a sequence of nonnegative i.i.d. r.v.s with a common
distribution F .

Assume F (0) ≡ P (Xn = 0) < 1,
0 < µ , E[Xn] <∞.

Define

S0 = 0

Sn =
n∑
i=1

Xi n = 1, 2, · · ·

Let N(t) , sup{n : Sn ≤ t}.

Definition 2.6.1. The counting process {N(t), t ≥ 0} is called a renewal pro-
cess.

Sn : the time of the nth event or renewal.
Xn : the interarrival time between (n− 1)th and nth events.

Sn
n

=
1
n

n∑
i=1

Xi → µ > 0 as n→∞ a.s. by strong law of large number

⇒ Sn →∞ as n→∞
⇒ N(t) = max{n : Sn ≤ t}

In a finite time of period, there are only a finite number of renewals.

N(t) ≥ n⇔ Sn ≤ t

P (N(t) = n) = P (N(t) > n)− P (N(t) ≥ n+ 1)
= P (Sn ≤ t)− P (Sn+1 ≤ t)
= Fn(t)− Fn+1(t)

where Fn is the distribution function of Sn.

E[N(t)] , m(t) is the renewal function.
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Chapter 3

Discrete-Time Markov
Chains

3.1 Definition

Let {Xn, n = 0, 1, 2, · · · } be a (discrete-time) stochastic process taking on a
finite or countable number of possible values, say, {0, 1, 2, · · · } — state space.
If Xn = i, then the process is said to be in state i at time n. Suppose

P (Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X1 = i1, X0 = i0) = Pij

for all states i0, i1, · · · , in−1, i, j and all n ≥ 0. Then {Xn, n ≥ 0} is called a
(discrete-time) stationary Markov chain.

Markov property: The conditional distribution of any future state Xn+1,
given the past state X0, X1, · · · , Xn−1 and the present state Xn, is independent
of the past states and depends only on the present states.

{Pij} satisfies

Pij > 0
∞∑
j=0

Pij = 1 i = 0, 1, 2, · · ·

(One-step) transition probability matrix

P =



P00 P01 P02 . . . P0j . . .
P10 P11 P12 . . . P1j . . .
...
Pi0 Pi1 Pi2 . . . Pij . . .
...


∞×∞

25
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Example 3.1.1. (General Random Walk) Let {Xi}∞i=1 be i.i.d. with
P (Xi = j) = aj , j = 0,±1,±2, . . .

Let S0 = 0, Sn =
∑n
i=1Xi, {Sn, n ≥ 0} is a Markov chain.

Pij = P (Sn+1 = j|Sn = i)
= P (Xn = j − i)
= aj−i

Example 3.1.2. (The M/G/1 Queue) Customers arrive at a service center
according to a Poisson process with rate λ. There is a single server and those
arrivals finding the server free go immediately into service; all others wait in line
until their service turn. The service time of successive customers are assumed
to be independent random variables having a common distribution G; and they
are also assumed to be independent of the arrival process.

Xn : # of customers left behind by the nth departure, n = 1, 2, . . .
Yn : # of customers arriving during the service period of (n+ 1)st customer.
Sn : service time of the nth customer.

Xn+1 =

{
Xn − 1 + Yn if Xn > 0
Yn if Xn = 0

{Xn : n ≥ 1} is a Markov chain.

P (Yn = j) =
∫ ∞

−∞
P (Yn = j|Sn+1 = x)dG(x)

=
∫ ∞

0

(λx)n

j!
e−λxdG(x) j = 0, 1, 2, . . .

P0j = P (Xn+1 = j|Xn = 0) = P (Yn = j) j = 0, 1, 2, . . .
Pij = P (Xn+1 = j|Xn = i) = P (Yn = j − i+ 1) i = 1, 2, . . . j ≥ i− 1
Pij = 0 i = 1, 2, . . . j < i− 1

3.2 Chapman-Kolmogorov Equations

n-step transition probabilities

P
(n)
ij = P (Xm+n = j|Xm = i)

where n ≥ 0, i, j ≥ 0.
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Theorem 3.2.1.

P
(m+n)
ij =

∞∑
k=0

P
(n)
ik P

(m)
kj

∀n,m ≥ 0, ∀i, j ≥ 0

Proof.

P
(m+n)
ij = P (Xm+n = j|X0 = i)

=
∞∑
k=0

P (Xm+n = j|Xn = k,X0 = i)P (Xn = k|X0 = i)

=
∞∑
k=0

P (Xm+n = j|Xn = k)P (Xn = k|X0 = i)

=
∞∑
k=0

P
(m)
kj P

(n)
ik

n-step transition matrix

P (n) = (P (n)
ij

P (m+n) = P (n)P (m)

P (n) = P · P (n−1) = · · · = P · P . . . P = Pn

3.3 Classification of States

State j is said to be accessible from state i if Pnij > 0 for some n ≥ 0. Two state
i and j accessible to each other are said to communicate and we write i↔ j.

Proposition 3.3.1. Communication is an equivalence relation. That is

(i) i↔ i;

(ii) if i↔ j, then j ↔ i;

(iii) if i↔ j, and j ↔ k, then i↔ k.

Proof. (i),(ii) are trivial. For (iii) ∃m,n ≥ 0, such that P (m)
ij > 0, P (n)

jk > 0.

P
(m+n)
ik =

∞∑
r=0

P
(m)
ir P

(n)
rk

≥ P
(m)
ij P

(n)
jk > 0
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Two states that communicate are said to be in the same class. The Markov
chain is said to be irreducible if there is only one class.

Given two state i and j. Define f (n)
ij the probability that starting in i, the

first transition into j occurs at time n, n = 0, 1, 2, . . . (f (0)
ij = 0, i 6= j; f (0)

ii = 1)

f
(n)
ij = P (Xn = j,Xk 6= j, ∀k = 0, 1, . . . , n− 1|X0 = i)

fij =
∑∞
n=1 f

(n)
ij : the probability of ever making a transition into j, given

starting in i. fij > 0 ⇔ j is accessible from i, for i 6= j.
State j is called recurrence if fjj = 1, and transient if fjj < 1. A recurrence

state j is called absorbing if Pjj = 1.

Theorem 3.3.1. State j is recurrence iff
∑∞
n=1 P

(n)
ij = +∞.

Proof. We want to show j is recurrent iff

E[# of visits to j|X0 = j] = +∞

If j is recurrent then w.p.1 the number of visits to j will be infinite.
If j is transient. At each time the process returns to j there is a positive

probability 1− fjj > 0 that it will never return again.

Bernoulli trial: “success” if it will never returns;
“failure” if it will return.

number of visits to j = the trial number on which the first success occurs.

E[# of visits to j|X0 = j] =
1

1− fjj
< +∞

E[# of visits to j|X0 = j] = E

[ ∞∑
n=1

χ{Xn=j}|X0 = j

]

=
∞∑
n=1

E[χ{Xn=j}|X0 = j]

=
∞∑
n=1

P (Xn = j|X0 = j)

Corollary 3.3.1. With probability 1 a transient state will only be visited a finite
number of times.

Corollary 3.3.2. A finite-state Markov chain has at least one recurrent state.

Proof. Suppose the states are 1, 2, . . . ,M . With probability 1, after a finite
number of time Ti, state i will never be visited, i = 1, 2, . . . ,M .

Let T =
∑M
i=1 Ti. After T no state will be visited. Contradiction.
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Corollary 3.3.3. If i is recurrent (resp. transient) and i↔ j, then j is recur-
rent (resp. transient).

Proof. Let m and n be such that P (n)
ij > 0, P (m)

ji > 0. For any s ≥ 1,

P
(m+n+i)
jj =

∑
k,l

P
(m)
jk P

(s)
kl P

(n)
lj

≥ P
(m)
ji P

(s)
ii P

(n)
ij

∞∑
s=1

Pm+n+s
jj ≥ P

(m)
ji

( ∞∑
s=1

P
(s)
ii

)
P

(n)
ij = +∞

State i is said to have period d is d is the greatest common divisor of those
n ≥ 1 that P (n)

ii > 0. (If P (n)
ii = 0∀n ≥ 1, then the period is defined to be +∞.)

A state with d = 1 is said to be aperiodic.

Example 3.3.1. Consider a Markov chain with the one-step transition matrix.
0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


P

(1)
00 = 0, P (1)

00 = 1
3 > 0, P (3)

00 = 0, P (4)
00 > 0.

{n ≥ 1|P (n)
00 > 0} = {2, 4, 6, . . . }. d = 2.

Example 3.3.2. 0.4 0.6 0
0.2 0.5 0.3
0.1 0.7 0.2


P

(1)
00 = 0.4 > 0
d = 1. Aperiodic.

Example 3.3.3. (Simple Random Walk) Consider an Markov chain with state
space {0,±1,±2, . . . } and transition probabilities Pi,i+1 = p, Pi,i−1 = 1 − p,
i = 0,±1,±2, . . . where 0 < p < 1. This is an irreducible Markov chain. d = 2.

P
(2n+1)
00 = 0

P
(2n)
00 =

(
2n
n

)
pn(1− p)n =

(2n)!
(n!)2

· [p(1− p)]n

Remark.

Sterling’s estimation

n! ∼ nn+1/2 e−n
√

2π
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(2n)!
(n!)2

· [p(1− p)]n ∼ (2n)2n+1/2 e−2n
√

2π
n2n+1 e−2n

√
2π

· [p(1− p)]n

=
1√
πn

· [4p(1− p)]n (∗)

4p(1− p) ≤ 1 and 4p(1− p) = 1 iff p = 1
2 .

(i) If p = 1
2 , (∗) = 1√

πn
⇒ 0 is recurrent.

(ii) If p 6= 1
2 , (∗) = [4p(1−p)]√

πn
⇒ 0 is transient.

3.4 Limit Theorem

For a state j, define

µjj =

{
∞ if j is transient.∑∞
n=1 nf

(n)
jj if j is recurrent.

µjj is expected number of transition needed to return to state j.

Theorem 3.4.1. If i↔ j then

(i)

lim
n→∞

1
n

n∑
k=1

P
(k)
ij =

1
µjj

(ii) If j is aperiodic, then

lim
n→∞

P
(n)
ij =

1
µjj

= πj

Definition 3.4.1. If state j is recurrent, then it is said to be positive recurrent
if µjj < +∞, and null recurrent if µjj = +∞. A positive recurrent, aperiodic
state is called ergodic.

Definition 3.4.2. A probability distribution {Pj , j ≥ 0} is called stationary
for the Markov chain if Pj =

∑∞
i=0 PiPij , ∀j ≥ 0.

Corollary 3.4.1. If {Pj , j > 0} is stationary, then

Pj =
∞∑
i=0

PiP
(x)
ij ,∀j ≥ 0,∀n ≥ 1
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Proof.

∞∑
i=0

PiP
(n)
ij =

∞∑
i=0

Pi

∞∑
k=0

PikP
(n−1)
kj

=
∞∑
k=0

( ∞∑
i=0

PiPik

)
P

(n−1)
kj

=
∞∑
k=0

PkP
(n−1)
kj

= · · · = Pj

If the distribution of X0 is stationary, Pj = P (X0 = j), then the distribution
of Xn is stationary. The proof is omitted here.

Theorem 3.4.2. A irreducible, aperiodic Markov chain belongs to one of the
following two classes:

(i) Either the states are all transient or all null recurrent; in this case, P (n)
ij →

0 as n→∞ for all i, j and there exists no stationary distribution.

(ii) Or else, all states are positive recurrent, that is πij = limn→∞ P
(n)
ij > 0.

In this case {πj , j ≥ 0} is a stationary distribution and there exits no other
stationary distribution.

Proof. Step 1 Prove if j is positive recurrent, and k → j, then k is also positive
recurrent.

πj = lim
n→∞

P
(n)
ij > 0

Let m be such that P (m)
jk > 0. Then P (n+m)

ik ≥ P
(n)
ij P

(m)
jk

πk = lim
n→∞

P
(n+m)
ik ≥

(
lim
n→∞

P
(n)
ij

)
P

(m)
jk > 0

Step 2 Prove that if the M.C. is positive recurrent then
{

πj∑∞
k=0 πk

, j ≥ 0
}



32 CHAPTER 3. DISCRETE-TIME MARKOV CHAINS

is a stationary distribution.

M∑
j=0

P
(n)
ij ≤

∞∑
j=0

P
(n)
ij = 1 ∀M

M∑
j=0

πj ≤ 1 ∀M ⇒
∞∑
j=0

πj ≤ 1

P
(n+1)
ij =

∞∑
k=0

P
(n)
ik Pkj ≥

M∑
k=0

P
(n)
ik Pkj ∀M

πj ≥
M∑
k=0

πkPkj ∀M ⇒ πj ≥
∞∑
k=0

πkPkj

If πj ≥
∑∞
j=0 πkPkj for some j,

∞∑
j=0

πj >

∞∑
j=0

∞∑
k=0

πkPkj

=
∞∑
k=0

πk

 ∞∑
j=0

Pkj


=

∞∑
k=0

πk ⇒ contradiction.

Step 3 Let {P j , j ≥ 0} be any stationary distribution. Then by Corol-
lary 3.4.1

P j =
∞∑
i=0

P
(n)
ij P i ≥

M∑
i=0

P
(n)
ij P i ∀M

⇒ P j ≥
∞∑
i=0

πjP i = πj

On the other hand

P j =
M∑
i=0

P
(n)
ij P i +

∞∑
i=M+1

P
(n)
ij P i

≤
M∑
i=0

P
(n)
ij P i +

∞∑
i=M+1

P i ∀M

⇒ P i ≤
M∑
i=0

πjP j +
∞∑

i=M+1

P i ∀M
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Let M →∞⇒

P j ≤
∞∑
i=0

πjP i = πj

πj∑∞
k=0 πk

= πj

Step 4 If all the states are transient or null recurrent, and {Pj , j ≥ 0} is a
stationary distribution. By Corollary 3.4.1, Pj = 0 ∀j. Contradiction.

Corollary 3.4.2. For case (ii) in Theorem 3.4.2, the limiting probability are
obtained by solving {

πj =
∑∞
i=0 πipij j = 0, 1, 2, · · ·∑∞

i=0 πi = 1

Example 3.4.1. (Weather Chain) Consider transition matrix0.4 0.6 0
0.2 0.5 0.3
0.1 0.7 0.2


π = (π0 + π1 + π2)
π0 = 0.4π0 + 0.2π1 + 0.1π2

π1 = 0.6π2 + 0.5π1 + 0.7π2

π2 = 0.3π1 + 0.2π2

1 = π0 + π1 + π2

⇒ π0 =
19
85

π1 =
48
85

π2 =
18
85

Example 3.4.2. (The M/G/1 Queue)

aj = P (Yn = j) =
∫ ∞

0

e−λx
(λx)j

j!
dG(x), j = 0, 1, 2, · · ·

P0j = aj j ≥ 0
Pij = aj−i+1 i ≥ 1, j ≥ i− 1
Pij = 0 i ≥ 1, j < i− 1

πj = π0aj +
j+1∑
i=1

πiaj−i+1, j = 0, 1, 2, · · ·

Introduce the generating function.

π(s) =
∞∑
j=0

πjs
j , A(s) =

∞∑
j=0

ajs
j
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π(s) =
∞∑
j=0

(
π0aj +

j+1∑
i=1

πiaj−i+1

)
sj

= π0A(s) +
∞∑
j=0

j+1∑
i=1

πiaj−i+1s
j

= π0A(s) +
∞∑
i=1

∞∑
j=i−1

πiaj−i+1s
j

= π0A(s) + s−1
∞∑
i=1

πis
i

 ∞∑
j=i−1

aj−i+1s
j−i+1


︸ ︷︷ ︸

A(s)

= π0A(s) +
A(s)(π(s)− π0)

s

π(s) =
(s− 1)π0A(s)
s−A(s)

lim
s→1

π(s) = lim
s→1

(s− 1)π0A(s)
s−A(s)

= π0 lim
s→1

A(s) + (s− 1)A′(s)
1−A′(s)

= π0
1

1− ρ

where ρ = A′(1) =
∑∞
j=0 jaj = E[Yn].

Therefore the stationary distribution exists if and only if ρ < 1. In this case
π0 = 1− ρ.

ρ = E[Yn] =
∫ ∞

0

E[Yn|Sn+1 = x]dG(x)

=
∫ ∞

0

λxdG(x)

= λ

∫ ∞

0

xdG(x) = λE[s]

ρ < 1 ⇔ λ <
1

E[s]
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Continuous-Time Markov
Chains

4.1 Definitions

Let {X(t), t ≥ 0} be a continuous-time stochastic process taking values in the
set of nonnegative integers. If

P{X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s} = P (X(t+ s) = j|X(s) = i)

for all s, t ≥ 0, and nonnegative integers i, j, x(u), 0 ≤ u < s, then {X(t), t ≥ 0}
is called a continuous-time Markov chain.

If P (X(t + s) = j|X(s) = i) is independent of s, then the Markov chain is
called stationary or homogeneous.

Let τi denote the amount of time that the process stays in state i before
making a transition into a different states. τi is exponentially distributed with
parameter vi (Eτi = 1

vi
). A state i with vi = +∞ is called instantaneous.

Assume throughout that 0 ≤ vi < +∞, ∀i.
The state i is called absorbing if vi = 0. An Markov chain is called regular

if, w.p.1, the number of transitions in any finite length of time is finite.

Pij(t) = P (X(t+ s) = j|X(s) = i)

Transition intensity

qij =


P ′ij(0) = lim

t→∞

Pij(t)
t

≥ 0 if i 6= j

P ′ij(0) = lim
t→∞

Pii(t)− 1
t

≤ 0 if i = j

35
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Remark.

∑
j

qij = 0

qii = −
∑
j 6=i

qij

Note. Q = (qij): generator of Markov chain.

Pij(∆t) = Pij(0) + P ′ij(0)∆t = qij∆t, i 6= j

qij : transition rate from i to j.

Pii(∆t) = Pii(0) + P ′ii(0)∆t = 1 + qii∆t

vi = −qii =
∑
j 6=i

qij

vi: rate at which the process makes a transition in state i.
Probability that a transition from i to j occurs

Pij = qij

(
− 1
qii

)
=
qij
vi
⇔ qij = viPij

4.2 Birth and Death Processes

Definition 4.2.1. A continuous-time Markov chain with states, 0,1,2,..., for
which qij = 0 whenever |i− j| > 1 is called a birth and death process.

λi = qi,i+1 birth rate
µi = qi,i−1 death rate
vi = λi + µi

Pi,i+1 =
λi

λi + µi

Pi,i−1 =
µi

λi + µi

For BAD process, whenever the process is in state i the time until the next
birth is exponential with rate λi, and is independent of the time until the next
death, which is exponential with rate µi.

Example 4.2.1. (The M/M/s Queue) Suppose that customers arrive at an s-
server service station in accordance with a Poisson process having rate λ. That
is, the times between successive arrivals are independent exponential random
variables having mean 1/λ. Each customer, upon arrival, goes directly into
service if any of the servers are free, and if not, then the customer joins the
queue (that is, he waits in line). When a server finishes serving a customer,
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the customer leaves the system, and the next customer in line, if there are any
waiting, enters the service. The successive service times are assumed to be
independent exponential random variables having mean 1/µ.

Let X(t) denote the number of customers at time t.
Then {X(t), t ≥ 0} is a BAD process.

λn = λ

µn =

{
sµ n ≥ s

nµ n < s
= min(n, s)µ

A BAD process is called a pure birth process if µn = 0 ∀n.

Example 4.2.2. (Yule Process) Consider a pure birth process resulting from
a population where each member acts independently and gives birth at an ex-
ponential rate λ. No one ever dies.

Let X(t) denote the population size at t.
{X(t), t ≥ 0} is a pure birth process with λn = nλ, n ≥ 1.
Consider the case when i = 1, X(0) = 1.

Pij(t) = P (X(t) ≥ j|X(0) = 1)− P (X(t) ≥ j + 1|X(0) = 1)

Let Ti denote the time between the (i− 1)st and the ith birth.

P (X(t) ≥ j|X(0) = 1) = P (T1 + T2 + · · ·+ Tj−1 ≤ t|X(0) = 1)

{Ti, i ≥ 1} are independt and Ti is exponential with rate iλ.

P (T1 ≤ t) = 1− e−λt

P (T1 + T2 ≤ t) =
∫ t

0

P (T1 + T2 ≤ t|T1 = x)λe−λxdx

=
∫ t

0

P (T2 ≤ t− x)λe−λxdx

=
∫ t

0

(1− e−2λ(t−x))λe−λxdx

= (1− e−λt)2

P (T1 + T2 + · · ·+ Tj ≤ t) = (1− e−λt)j

Pij(t) = (1− e−λt)j−1 − (1− e−λt)j

= (1− e−λt)j−1e−λt ∀j = 1, 2, · · ·

This is a geometric distribution with mean eλt.
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Now if the population starts with i individuals, X(0) = i, the population
size at t will be the sum of i i.i.d. geometric r.v.s, hence is a negative binomial
distribution

Pij(t) =
(
j − 1
i− 1

)
e−λti(1− e−λt)j−i, j ≥ i ≥ 1

with mean ieλt.

4.3 The Kolmogorov Differential Equations

Lemma 4.3.1. For all s, t ≥ 0

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s)

Proof left as an exercise.

Theorem 4.3.1. (Kolmogrov’s Backward Equations) For all i, j and t ≥ 0

P ′ij(t) =
∞∑
k=0

qikPkj(t) =
∑
k 6=i

qikPkj(t)− ViPij(t)

P ′(t) = QP (t)

Proof. Assume there are finite states.

1
h

[Pij(t+ h)− Pij(t)] =
1
h

[
N∑
k=0

Pik(h)Pkj(t)− Pij(t)

]

=
1
h

∑
k 6=i

Pik(h)Pkj(t) + (Pii(h)− 1)Pij(t)


P ′ij(t) =

∑
k 6=i

qikPkj(t) + qiiPij(t)

Theorem 4.3.2. (Kolmogrov’s Forward Equations) Under suitable conditions
(including BAD process and finite state chains).

P ′ij(t) =
∑
k

qkjPik(t) =
∑
k 6=i

qkjPik(t)− vjPij(t)

P ′(t) = P (t)Q



4.3. THE KOLMOGOROV DIFFERENTIAL EQUATIONS 39

Example 4.3.1. Consider a two state Markov chain with

Q =
[
−λ λ
µ −µ

]
P =

[
P00(t) P01(t)
P10(t) P11(t)

]

P ′00(t) = −λP00(t) + µP01(t)
= −λP00(t) + µ(1− P00(t))
= −(λ+ µ)P00(t) + µ

P00(0) = 1

d

dt
[e(−λ+µ)tP00(t)] = µe(λ+µ)t

⇒

{
P00(t) = µ

λ+µ + λ
λ+µe

−(λ+µ)t

P11(t) = λ
λ+µ + µ

λ+µe
−(λ+µ)t

Example 4.3.2. For a pure birth process the forward equations are

P ′ii(t) =
∑
k 6=i

qkiPik(t)− vipii(t)

= −λiPii(t)
Pii(0) = 1

⇒ Pii(t) = e−λit

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t)

= qj−1,j Pi,i−1(t)− λjPij(t)

d

dt
[eλjtPij(t)] = λ− j − 1eλjtPi,j−1(t)

eλjtPij(t) =
∫ t

0

λj−1 e
λjsPi,j−1(s)ds

Pij(t) = λj−1 e
−λjt

∫ t

0

eλjsPi,j−1(s)ds

For Yule processes, λj = jλ.

Pij(t) =
(
j − 1
i− 1

)
e−λti(1− e−λt)j−1
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4.4 Limiting Probabilities

If limt→∞ Pij(t) exists and equals Pj , then Pj is called the limiting probability
(stationary distribution) of state j.

Theorem 4.4.1. If the limiting probability (P1, P2, · · · , Pk, · · · ) = P exists,
then it satisfies {

PQ = 0∑
k Pk = 1

Proof. Assume there are finite states.

P ′ij(t) =
∑
k

qkjPik(t) (forward)

P ′ij(t) =
∑
k

qikPkj(t) (backward)

lim
t→∞

P ′ij(t) =
∑
k

qikPj = Pj · 0 = 0

Pj is long run proportion of time the process is in state j.

∑
k 6=j qkjPk = vjPj ∀j (Balance equations)

rate at which the
process enters
state j in the
long run

66nnnnnnnnnnnnnn rate at which the
process leaves
state j in the
long run

hhQQQQQQQQQQQQQQQ

Example 4.4.1. Consider a BAD processes

State Rate process leave Rate process enter
0 λ0P0 µ1P1

n = 1, 2, · · · (λn + µn)Pn λn−1Pn−1 + µn−1Pn−1

0
λ0

((
1

µ1

hh · · · n− 1

λn−1

<< n

µn

{{
λn

##
n+ 1

µn+1

bb
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λ0P0 = µ1P1

λnPn = λ0P0 + µn+1Pn+1 − µnPn

λ1P1 = λ0P0 + µ2P2 − µ1P1 = µ2P2

...
λnPn = µn+1Pn+1

P1 =
λ0

µ1
P0

P2 =
λ1

µ2
P1 =

λ1λ2

µ1µ2
P0

...

Pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
P0

P0 +
∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
P0 = 1

P0 =

(
1 +

∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

)−1

Provide that
∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
< +∞

Example 4.4.2. Consider M/M/1 queue.

λn = λ µn = µ ∀n ≥ 1

∞∑
n=1

λn

µn
=

∞∑
n=1

(
λ

µ

)n
< +∞⇒ λ < µ

Pn =

(
λ

µ

)n
1 +

∞∑
n=1

(
λ

µ

)n =
(
λ

µ

)n
µ− λ

µ
, ∀n ≥ 1
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Example 4.4.3. Consider a job shop consisting of M independent machines
and a repairman. Then breakdown rate of a machine is λ and the repair rate is
µ. Let X(t) denote the number of machines down at time t ∈ {0, 1, 2, · · · , n}.
This is a BAD process with parameters µn = µ, λn = λ, 0 ≤ n ≤M .

P0 =
1

1 +
M∑
n=1

Mλ(M − 1)λ · · · (M − n+ 1)λ
µn

=
1

1 +
M∑
n=1

(
λ

µ

)n
M !

(M − n)!

Pn =

(
λ

µ

)n
M !

(M − n)!

1 +
M∑
n=1

(
λ

µ

n) M !
(M − n)!

What is long-run proportion of time that a given machine is working?

P (the machine is working) =
M∑
n=0

P (the machine is working|n machines are down)Pn

=
M∑
n=0

M − n

M
Pn =

1 +
M∑
n=1

(
λ

µ

)n (M − 1)!
(M − n− 1)!

1 +
M∑
n=1

(
λ

µ

)n
M !

(M − n)!
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Martingales

5.1 Definitions

Definition 5.1.1. A stochastic process {Zn, n ≥ 1} is called a martingale if

E|Zn| < +∞ ∀n

and
E[Zn+1|Z1, Z2, · · · , Zn] = Zn

Lemma 5.1.1. For any random variables X, Y , Z.

(a) E[X|Y ] = E{E[X|Y, Z]|Y }

(b) E[X|X,Y ] = X

(c) E[XZ|X,Y ] = XE[Z|X,Y ]

Definition 5.1.2. Given random variables X and Y , and an event A. X is
said to be determined by Y if the value of X is completely determined by that
of Y . A is said to be determined by Y if χA is determined by Y .

Lemma 5.1.2. (a) E[X|Y ] = X if X is determined by Y .

(b) E[X|Y, Z] = E[X|Y ] if Z is determined by Y .

Proposition 5.1.1. For a martingale {Zn, n ≥ 1}

E[Zn] = E[Z1] ∀n

Proof.
E[Zn] = E[E[Zn+1|Z1, Z2, · · · , Zn]] = E[Zn+1]

43
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Example 5.1.1. Let X1, X2, · · · be independent and identically distributed
random variables with 0 mean, and E|Xi| < +∞. Let Zn =

∑n
i=1Xi.

E|Zn| ≤
n∑
i=1

E|Xi| < +∞ ∀n

E[Zn+1|Z1, Z2, · · · , Zn] = E[Zn +Xn+1|Z1, Z2, · · · , Zn]
= E[Zn|Z1, Z2, · · · , Zn] + E[Xn+1|Z1, Z2, · · · , Zn]
= Zn + E[Xn+1] = Zn

Example 5.1.2. Let X1, X2, · · · be independent and identically distributed
random variables with E[Xi] = 1 and E|Xi| < +∞. Let Zn =

∏n
i=1Xi, n ≥ 1.

E|Zn| = E

[
n∏
i=1

|Xi|

]
=

n∏
i=1

E|Xi| < +∞

E[Zn|Z1, Z2, · · · , Zn] = E[ZnXn+1|Z1, Z2, · · · , Zn]
= ZnE[Xn+1|Z1, Z2, · · · , Zn] = Zn

Example 5.1.3. (Doob type martingale) Let X,Y1, Y2, · · · be random variables
with E|X| < +∞ and let Zn = E[X|Y1, Y2, · · · , Yn] ∀n ≥ 1.

E|Zn| = E|E[X|Y1, Y2, · · · , Yn]|
≤ E[E[|X||Y1, Y2, · · · , Yn]]
= E|X| < +∞

E[Zn+1|Y1, Y2, · · · , Yn] = E{E[X|Y1, Y2, · · · , Yn+1]|Y1, Y2, · · · , Yn}
= E[X|Y1, Y2, · · · , Yn] = Zn

E[Zn+1|Z1, Z2, · · · , Zn] =
E{E[Zn+1|Y1, Y2, · · · , Yn, Z1, Z2, · · · , Zn]|Z1, Z2, · · · , Zn}

= E[Zn+1|Y1, Y2, · · · , Yn] = Zn

5.2 Stopping Times

Definition 5.2.1. The positive, integer valued, possibly infinite, random vari-
able N is said to be a random time for the process {Zn, n ≥ 1} if the event
{N = n} is terminated by Z1, Z2, · · · , Zn ∀n if P (N < +∞) = 1, then the
random time N is said to be a stopping time.
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Let N be a random time for {Zn, n ≥ 1} and Zn =

{
Zn if n ≤ N

ZN if n > N

{Zn, n ≥ 1} is called the stopped process of {Zn, n ≥ 1}.
{Z1, Z2, · · · , Zn} is determined by {Z1, Z2, · · · , Zn}.

Proposition 5.2.1. If N is a random time for the martingale {Zn, n ≥ 1},
then the stopped process {Zn, n ≥ 1} is also a martingale.

Proof. Define In = χn≤N , which is determined by Z1, Z2, · · · , Zn−1.
We have Zn = Zn−1 + In(Zn − Zn−1)

E[Zn|Z1, Z2, · · · , Zn−1] = E[Zn−1 + In(Zn − Zn−1|Z1, Z2, · · · , Zn−1)]

= Zn−1 + InE[Zn − Zn−1|Z1, Z2, · · · , Zn−1]︸ ︷︷ ︸
0

= Zn−1

Theorem 5.2.1. (The Martingale Stopping Theorem/Optimal Sampling The-
orem) Let N be a stopping time for the martingale {Zn, n ≥ 1}. If either

(i) Zn are uniformly bounded; or

(ii) N is bounded; or

(iii) E[N ] < +∞ and there is M < +∞ such that

E[|Zn−1 − Zn| |Z1, · · · , Zn] ≤M

Then E[ZN ] = E[Z1].

Proof. Assume (i). By Proposition 5.2.1, E[Zn] = E[Z1] = E[Z1] ∀n. However
P (N < +∞) = 1, P (Zn → ZN , as n→ +∞) = 1

E[ZN ] = E[ lim
n→∞

Zn] = lim
n→∞

E[Zn] (dominated convergence theorem)

= E[Z1]

Corollary 5.2.1. (Wald’s Equation) If Xi, i ≥ 1, are independent and identi-
cally distributed random variables with E|Xi| < +∞, and N is a stopping time
for X1, X2, · · · with E[N ] < +∞. Then

E

[
N∑
i=1

Xi

]
= E[N ]E[X1]



46 CHAPTER 5. MARTINGALES

Proof. Let M = E[X1] < +∞, and

Zn =
n∑
i=1

(Xi − µ)

{Zn, n ≥ 1} is a martingale.

E[|Zn+1 − Zn| |Z1, · · · , Zn] = E[|Xn+1 − µ| |Z1, · · · , Zn]
≤ E|Xn+1|+ µ < +∞

E[ZN ] = E[X1 − µ] = 0
‖

E

[
N∑
i=1

(Xi − µ)

]
= E

[
N∑
i=1

Xi −Nµ

]

= E

[
N∑
i=1

Xi

]
− µE[N ]

Example 5.2.1. (Simple Random Walk) Consider an individual who starts at
0 and at each step either moves 1 position to the right with probability p or
one to the left with probability 1 − p. Assume that the successive movements
are independent. If p > 1/2 find the expected number of steps it takes until the
individual reaches position i, i > 0.

Solution.

Xj =

{
1 step j is to the right
−1 step j is to the left

N : # of steps to reach i

N∑
j=1

Xj = i⇒ i = E[N ]E[Xi] = E[N ](2p− 1)

E[N ] =
i

(2p− 1)

If p = 1
2 , then 0 is recurrent.

Example 5.2.2. (Three Players) Players X, Y and Z contest the following
game. At each stage two of them are randomly chosen in sequence, with the
first one chosen being required to give 1 coin to the other. All of the possible
choices are equally likely and successive choices are independent of the past.
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This continues until one of the players has no remaining coins. At this point
that player departs and the other two continue playing until one of them has
all the coins. If the players initially have x, y and z coins, respectively, find the
expected number of plays until one of them has all the s = x+ y + z coins.

Solution. Consider an equivalent game: each player may hold “negative” num-
ber of coins. For example, at some time, X, Y and Z have 0, -4 and s+ 4 coins
respectively. Let Xi, Yi and Zi denote the number of coins X, Y and Z have
after ith round. Let T denotes the first time that two of the values Xn, Yn, Zn
are 0. The question is to find E[T ].

First show Mn = XnYn + YnZn + ZnXn + n is a Martingale.

Case 1 XnYnZn 6= 0.

E[Xn+1Yn+1|Xn = X,Yn = Y ]
= [(x+ 1)y + (x+ 1)(y − 1) + x(y + 1) + x(y − 1)

+(x− 1)y + (x− 1)(y + 1)] · 1
6

= x− y − 1
3

E[Mn+1|Xn = x, Yn = y, Zn = z] = (xy − 1
3
) + (yz − 1

3
) + (xz − 1

3
) + (n+ 1)

= xy + yz + zx− 1 + (n+ 1)
= xy + yz + zx+ n

⇒ E[Mn+1|Xn, Yn, Zn] = Mn

Case 2 XnYnZn = 0. (Assume Xn = 0, i.e. one player has quitt ed.)

E[Yn+1Zn+1|Yn = y, Zn = z] = [(y + 1)(z − 1) + (y − 1)(z + 1)] · 1
2

= yz − 1

⇒ E[Mn+1|Xn, Yn, Zn] = YnZn − 1 + (n+ 1) = YnZn + n = Mn

Since two of XT , YT and ZT are 0, it follows that E[T ] = E[MT ]. Consider
T is a stopping time, from Theorem 5.2.1

E[MT ] = E[M0] = xy + yz + zx
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5.3 Azuma’s Inequality

Lemma 5.3.1. Let X be such that with E[X] = 0 and P (−α ≤ X ≤ β) = 1.
Then for any convex function f

E[f(x)] ≤ β

α+ β
f(−α) +

α

α+ β
f(β)

Proof. Let X = (1− λ)(−α) + λβ.

λ =
X + α

α+ β
1− λ =

β −X

α+ β

f(x) is convex function.

⇒ f(x) ≤ (1− λ)f(−α) + λf(β)

⇒ E[f(x)] ≤ β

α+ β
f(−α) +

α

α+ β
f(β)

Lemma 5.3.2. For any 0 ≤ θ ≤ 1 and X ∈ R, we have

θe(1−θ)x + (1− θ)e−θx ≤ ex
2/8

Proof. Let θ = 1+α
2 , x = 2β, we need to show for ∀ − 1 ≤ α ≤ 1, β ∈ R,

(1 + α)eβ(1−α) + (1− α)e−β(1+α) ≤ 2eβ
2/2

or, equivalently,
eβ + e−β + α(eβ − e−β) ≤ 2eαβ+β2/2

It is true when α = ±1 or |β| is large, intuitively.
Let f(α, β) = eβ + e−β + α(eβ − e−β)− 2eαβ+β2/2.
We need to show f(α, β) ≤ 0, for −1 < α < 1 and |β| < 100.
Otherwise, there is a maximum point, α∗ ∈ (−1, 1), β∗ ∈ (−100, 100), such

that f(α∗, β∗) > 0. (β∗ 6= 0, otherwise f(α∗, 0) = 0)

⇒


0 =

∂f

∂α

∣∣∣∣ α=α∗

β=β∗
= eβ

∗
− e−β

∗
− 2β∗eα

∗β∗+β∗2/2

0 =
∂f

∂β

∣∣∣∣ α=α∗

β=β∗
= eβ

∗
− e−β

∗
+ α∗(eβ

∗
+ e−β

∗
)− 2(α∗ + β∗)eα

∗β∗+β∗2/2

⇒ 1 + α∗
eβ

∗
+ e−β

∗

eβ∗ − e−β∗
=
α∗

β∗
+ 1

⇒ α∗
eβ

∗
+ e−β

∗

eβ∗ − e−β∗
=
α∗

β∗
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If α∗ = 0, from 0 =
∂f

∂β

∣∣∣∣ α=α∗

β=β∗
we have

eβ
∗
− e−β

∗
= 2β∗eβ

∗2/2

But

eβ
∗
− e−β

∗
=

∞∑
i=0

β∗i

i!
−

∞∑
i=0

(−β∗)i

i!
=

∞∑
i=0

2β∗(2i+1)

(2i+ 1)!

2β∗eβ
∗/2 = 2β∗

∞∑
i=0

(β∗2/2)i

i!
= 2β∗

∞∑
i=0

(β∗)2i

2i · i!
=

∞∑
i=0

(β∗)2i+1

2i+1 · i!

Consider (2i+ 1)! and 2i · i!, we have (2i+ 1)i > 2i · i! ∀i.
So eβ

∗−e−β∗

< 2β∗eβ
∗/2 and α∗ 6= 0.

So
eβ

∗
+ e−β

∗

eβ∗ − e−β∗
=

1
β∗

, i.e. β∗(eβ
∗

+ e−β
∗
) = eβ

∗ − e−β
∗
.

or, expanding in a Taylor series,

∞∑
i=0

(β∗)2i+1

(2i)!
=

∞∑
i=0

(β∗)2i+1

(2i+ 1)!

which is clearly not possible when β∗ 6= 0.

Theorem 5.3.1. (Azuma’s Inequality) Let {Zn, n ≥ 1} be a martingale with
µ = E[Zn]. Let Z0 = µ. Assume for αn ≥ 0, βn ≥ 0, n ≥ 1,

−αn ≤ Zn − Zn−1 ≤ βn

Then ∀n ≥ 0, a > 0P (Zn − µ ≥ a) ≤ exp
[
−2a2/

∑n
i=1(αi + βi)2

]
P (Zn − µ ≤ −a) ≤ exp

[
−2a2/

∑n
i=1(αi + βi)2

]
Proof. First assume µ = 0, for any c ≥ 0.

P (Zn ≥ a) = P (ecZn ≥ eca) ≤ e−ca · E[ecZn ] (Markov’s inequality)

Let Wn = ecZn , n > 0.
Then Wn = ecZn−1ec(Zn−Zn−1) = Wn−1e

c(Zn−Zn−1).

E[Wn|Zn−1] = Wn−1E[ec(Zn−Zn−1)|Zn−1]

Noticing E[Zn − Zn−1|Zn−1] = 0, apply Lemma 5.3.1 to get

E[Wn|Zn−1] ≤Wn−1

[
βn

αn + βn
e−cαn +

αn
αn + βn

ecβn

]
, Wn−1Yn
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So

E[Wn] ≤ YnE[Wn−1] ≤ · · · ≤
n∏
i=1

YiE[W0] =
n∏
i=1

Yi

=
n∏
i=1

[
βn

αn + βn
e−cαn +

αn
αn + βn

ecβn

]
Let θi = αi

αi+βi
, x = c(αi + βi), applying Lemma 5.3.2, we have

E[Wn] ≤
n∏
i=1

exp
(
c2(αi + βi)2

8

)
Hence

P (Zn ≥ a) ≤ exp

[
−ca+

n∑
i=1

(αi + βi)2

8
c2

]
, f(c)

f(c) achieves minimum at c∗ =
4a∑n

i=1(αi + βi)2
> 0.

So {
P (Zn ≥ a) ≤ exp

[
−2a2/

∑n
i=1(αi + βi)2

]
P (Zn ≤ −a) ≤ exp

[
−2a2/

∑n
i=1(αi + βi)2

]
For µ 6= 0, consider {Zn − µ, n ≥ 1} and {µ− Zn, n ≥ 1}.

Example 5.3.1. LetX1, X2, · · · be random variables with E[X1] = 0, E[|Xi|] <
+∞ and E[Xi|X1, · · · , Xi−1] = 0 for i ≥ 1.

1. Zn =
∑n
i=1Xi is Martingale (from definition).

2. Now suppose −αi ≤ Xi ≤ βi, ∀i, µ = E[Zn] = 0. By Theorem 5.3.1

P

(
n∑
i=1

Xi ≥ a

)
≤ exp

[
−2a2/

n∑
i=1

(αi + βi)2
]

P

(
n∑
i=1

Xi ≤ −a

)
≤ exp

[
−2a2/

n∑
i=1

(αi + βi)2
]

Example 5.3.2. Let h be a function such that if the vectors x = (x1, · · · , xn),
y = (y1, · · · , yn) differ in at most one coordinate, then |h(x) − h(y)| ≤ 1. Let
X1, · · · , Xn be independent random variables. Then with X = (X1, · · · , Xn),
we have ∀a > 0

(i) P [h(x)− E[h(x)] ≥ a] ≤ e−a
2/2n

(ii) P [h(x)− E[h(x)] ≤ −a] ≤ e−a
2/2n
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Proof. Consider the Doob type martingale (Example 5.1.3)

Zi = E[h(X)|X1, · · · , Xi]

| E[h(X)|X1 = x1, · · · , Xi = xi]− E[h(X)|X1 = x1, · · · , Xi−1 = xi−1]|
= | E[h(x1, · · · , xi, Xi+1, · · · , Xn)]− E[h(x1, · · · , xi−1, Xi, · · · , Xn)]|
= | E[h(x1, · · · , xi, Xi+1, · · · , Xn)− h(x1, · · · , xi−1, Xi, · · · , Xn)]|
= E[|h(x1, · · · , xi, Xi+1, · · · , Xn)− h(x1, · · · , xi−1, Xi, · · · , Xn)|]
≤ 1 (only Xi may be different in two items)

So |Zi−Zi−1| ≤ 1 or −1 ≤ Zi−Zi−1 ≤ 1, applying Azuma’s inequality with
αi = βi = 1 and noticing Zn = h(x) and E[Zn] = E[h(X)],

P (h(x)− E[h(x)] ≥ a) ≤ exp
(
− 2a2∑n

i=1 22

)
= e−a

2/2n

5.4 Martingale Convergence Theorem

Definition 5.4.1. A stochastic process {Zn, n ≥ 1} with E[|Zn|] < +∞, ∀n ≥
1, is called a submartingale if

E[Zn+1|Z1, · · · , Zn] ≥ Zn

and a supermartingale if

E[Zn+1|Z1, · · · , Zn] ≤ Zn

Theorem 5.4.1. If N is a stopping time for {Zn, n ≥ 1} such that any one of
the three condition (i) - (iii) of Theorem 5.2.1 satisfies, then{

E[ZN ] ≥ E[Z1] for a submartingale
E[ZN ] ≤ E[Z1] for a supermartingale

Lemma 5.4.1. If {Zi, i ≥ 1} is a submartingale and N be a stopping time such
that P (N ≤ n) = 1 for a given n, then E[Z1] ≤ E[ZN ] ≤ E[Zn].

Proof. Only need to show E[ZN ] ≤ E[Zn].

E[Zn] = E[E[Zn|Z1, · · · , ZN ]]

=
∑
k≤n

E[E[Zn|Z1, · · · , ZN ]|N = k]P (N = k)

=
∑
k≤n

E[E[Zn|Z1, · · · , Zk]|N = k]P (N = k)

≥
∑
k≤n

E[Zk|N = k]P (N = k)

= E[ZN ]
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Lemma 5.4.2. If {Zn, n ≥ 1} is a martingale and f is a convex function with
E[|f(Zn)|] < +∞, ∀n, then {f(Zn), n ≥ 1} is a submartingale.

Proof.

E[f(Zn+1)|Z1, · · · , Zn] ≥ f(E[Zn|Z1, · · · , Zn]) = f(Zn)

Theorem 5.4.2. (Kolmogorov’s Inequality for Submartingale) If {Zn, n ≥ 1}
is a nonnegative submartingale, then ∀a > 0

P (max(Z1, · · · , Zn) ≥ a) ≤ E[Zn]
a

Proof. Define N = min{i : Zi > a, i ≤ n} (N = n, if Zi ≤ a, ∀i ≤ n). Then N
is a stopping time with P (N ≤ n) = 1. Now from Lemma 5.4.1

P (max{Z1, · · · , Zn} ≥ a) ≤ P (Zn ≥ a) ≤ E[ZN ]
a

≤ E[Zn]
a

Corollary 5.4.1. Let {Zn, n ≥ 1} be a martingale, then ∀a > 0

(i) P (max{|Z1|, · · · , |Zn|} > a) ≤ E|Zn|
a

(ii) P (max{|Z1|, · · · , |Zn|} > a) ≤ E[Z2
n]

a2

Proof. Parts (i) and (ii) follow from Lemma 6.4.4 and Kolmogrov’s inequality
since the functions f(x) = |x| and f(x) = x2 are both convex.

Theorem 5.4.3. (The Martingale Convergence Theorem) If {Zn, n ≥ 1} is a
martingale such for some M < +∞

E|Zn| ≤M ∀n

then, with probability 1, limn→∞ Zn exists and is finite.

Proof. Assume that E|Zn|2 ≤ M ∀n. By Lemma 5.4.2, {Z2
n, n ≥ 1} is a

submartingale. So E|Zn|2 is nondecreasing. However E|Zn|2 ≤ M , hence,
limn→∞ |Zn|2 = µ exists. Now we want to show that {Zn, n ≥ 1} is a Cauchy
sequence with probability 1, i.e. with probability 1

|Zm+k − Zm| → 0 as m, k →∞
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Now fix ε > 0 and n > 1

P (|Zm+k − Zm| > ε for some k ≤ n)

≤ E|Zm+n − Zn|
ε2

(Corollary 5.4.1 - (ii))

=
1
ε2
E[Z2

m+n − 2Zm+nZm + Z2
m] (∗)

E[Zm+nZn] = E[E[Zm+nZm|Zm]]
= E[ZmE(Zm+n|Zn)]
= E[Z2

m]

(∗) ≤ 1
ε2
E[Z2

m+n − Z2
m]

Leaving n→∞

P (|Zm+k − Zm| > ε for some k) ≤ 1
ε2

(µ− E[Z2
m])

Leaving m→∞

P (|Zm+k − Zm| > ε for some k) → 0

Thus, with probability 1, Zn will be a Cauchy sequence, and thus limn→∞ Zn
will exists and be finite.

Lemma 5.4.3. If {Zn, n ≥ 1} is a nonnegative martingale, then, with proba-
bility 1, limn→∞ Zn exists and is finite.

Proof.

E|Z − n| = E[Zn] = E[Z1] ≤ +∞ ∀n

Example 5.4.1. Consider a gamble playing a fair game whose fortune is Zn
after nth play. On each gamble at least 1 unit is either lost or won and no credit
is given.

Let N = min{n : Zn = Zn+1} denoting the number of play until the gamble
is broke. Since {Zn, n ≥ 1} is a nonnegative martingale, limn→∞ Zn exists and
is finite with probability 1. However |Zn+1 − Zn| ≥ 1, ∀n < N

⇒ P (N <∞) = 1
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Chapter 6

Brownian Motions

6.1 Definitions and Basic Properties

Definition 6.1.1. A continuous-time stochastic process {X(t), t ≥ 0} is called
a Brownian motion (or Wiener process) if

(i) X(0) = 0

(ii) {X(t), t ≥ 0} has stationary and independent increments.

(iii) X(t) ∼ N(0, c2t) ∀t > 0

It is called a standard Brownian motion if c = 1 (which we will assume through-
out).

X(t) = ∆x(X1 +X2 + · · ·+X[ t
∆t ])

where Xi =

{
+1 if the ith step of length ∆x is to the right
−1 if it to the left

E[X(t)] = 0

Var[X(t)] = (∆x)2 · 1 ·
[
t

∆t

]
Take ∆x =

√
∆t, then Var[X(t)] = t.

Basic properties of Brownian motion {X(t), t ≥ 0}

(a) X(t) is a continuous function of t with probability 1.

(b) X(t) is nowhere differentiable with probability 1.

55
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(c) X(t) is Markovian.

P (X(t+ s) ≤ a|X(s) = x,X(u), 0 ≤ u < s)
= P (X(t+ s)−X(s) ≤ a− x|X(s) = x,X(u), 0 ≤ u < s)
= P (X(t+ s)−X(s) ≤ a− x)
= P (X(t+ s)−X(s) ≤ a− x|X(s) = x)
= P (X(t+ s) ≤ a|X(s) = x)

(d) Consider the joint distribution of X(t1), X(t2), · · · , X(tn) where 0 ≤ t1 <
t2 < · · · < tn.
First of all, the density function of X(t)

ft(x) =
1√
2πt

e−x
2/2t

The joint density of X(t1), X(t2), · · · , X(tn)

f(x1, x2, · · · , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1)

(e) For s ≤ t, the covariance

cov(X(s), X(t)) = cov(X(s), X(s) +X(t)−X(s))
= cov(X(s), X(s)) + cov(X(s), X(t)−X(s))
= s

(f) Fix t1 ≥ 0, X(t+ t1)−X(t) is still a Brownian motion.

Example 6.1.1. Compute the conditional distribution of X(s) given X(t) = B
where s < t.

Solution. The conditional density

f(x|B) =
f(x,B)
fx(t)(B)

=
fs(x)ft(B − x)

ft(B)

=

1

2π
√
s(t−s)
1√
2πt

exp
{
−x

2

2s
− (B − x)2

2(t− s)
+
B2

2t

}

=
1√

2π
s

t
(t− s)

exp

− (x− BS
t )2

2
s

t
(t− s)


It is a normal distribution with

E[X(s)|X(t) = B] = B
s

t

⇒ E[X(s)|X(t)] =
s

t
X(t)

Var[X(s)|X(t) = B] =
s

t
(t− s)
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6.2 Hitting Times

Given a Brownian motion {X(t), t ≥ 0} and a ∈ R+, Ta = inf{t ≥ 0 : X(t) = a}.
If a > 0

P (X(t) ≥ a) = P (X(t) ≥ a|Ta ≤ t)P (Ta ≤ t)
+ P (X(t) ≥ a|Ta < t)P (Ta < t)

=
1
2
P (Ta ≤ t)

P (Ta ≤ t) = 2P (X(t) ≥ a)

= 2 · 1√
2πt

∫ +∞

a

e−y
2/2tdy

=
2√
2πt

∫ +∞

a/
√
t

e−y
2/2dy

E[Tn] =
∫ ∞

0

P (Ta > t)dt

=
∫ ∞

0

(
1− 2√

2π

∫ +∞

a/
√
t

e−y
2/2dy

)
dt

=
2√
2π

∫ ∞

0

∫ a/
√
t

0

e−y
2/2dy dt

=
2√
2π

∫ ∞

0

e−y
2/2

∫ a2/y2

0

dt dy

=
2a2

√
2π

∫ ∞

0

e−y
2/2

y2
dy

≥ 2a2

√
2π

∫ 1

0

e−y
2/2

y2
dy

≥ 2a2

√
2π
e−1/2

∫ 1

0

1
y2
dy

= ∞

If a < 0, then by symmetry

P (Ta ≤ t) = P (T−a ≤ t)

=
2√
2π

∫ +∞

|a|/
√
t

e−y
2/2dy

For a > 0

P

(
max
0≤s≤t

X(s) ≥ a

)
= P (Ta ≤ t)
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Let 0(t1, t2), where t2 > t1 ≥ 0, denote the event that the Brownian motion
takes on 0 at least once in the interval (t1, t2).

P (0(t1, t2)) =
1√
2πt1

∫ ∞

−∞
P (0(t1, t2)|X(t1) = x)e−x

2/2t1dx

Since Y (t) = X(t1 + t)−X(t1) is a Brownian motion

P (0(t1, t2)|X(t1) = x) = P (T|x| ≤ t2 − t1)

So

P (0(t1, t2)|X(t1) = x)

=
2√
2πt1

∫ ∞

0

2√
2π(t1 − t2)

∫ ∞

x

e−y
2/2(t2−t1)dy · e−x

2/2t1dx

= 1− 2
π

arcsin
√
t1
t2

Proposition 6.2.1. For 0 < x < 1 and t > 0,

P (Brownian motion takes no zero value in (xt, t)) =
2
π

arcsin
√
x

6.3 Variation on Brownian Motion

Model 1. (Brownian Motion Absorbed at a Point) Let {X(t), t ≥ 0} be a
Brownian motion and x > 0. Define

Z(t) =

{
X(t) if t < Tx

x if t ≥ Tx

then {Z(t), t ≥ 0} is Brownian motion that when it hits x remains there forever.

P (Z(t) = x) = P (Tx ≤ t) =
2√
2πt

∫ ∞

x

e−y
2/2tdy

P (Z(t) ≤ y) = P

(
X(t) ≤ y, max

0≤s≤t
X(s) < x

)
= P (X(t) ≤ y)− P

(
X(t) ≤ y, max

0≤s≤t
X(s) ≥ x

)

P

(
X(t) ≤ y, max

0≤s≤t
X(s) ≥ x

)
= P

(
X(t) ≤ y

∣∣∣max
0≤s≤t

X(s) ≥ x

)
︸ ︷︷ ︸

I

P

(
max
0≤s≤t

X(s) ≥ x

)
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I = P

(
X(t) ≥ x+ (x− y)

∣∣∣max
0≤s≤t

X(s) ≥ x

)
So

P

(
X(t) ≤ y, max

0≤s≤t
X(s) ≥ x

)
= P

(
X(t) ≥ 2x− y, max

0≤s≤t
X(s) ≥ x

)
= P (X(t) ≥ 2x− y)
= P (X(t) ≤ y − 2x)

P (Z(t) ≤ y) = (y − 2x < X(t) ≤ y)

=
1√
2πt

∫ y

y−2x

e−u
2/2tdu

Model 2. (Brownian Motion Reflected at the Origin) If {X(t), t ≥ 0} is a
Brownian motion, then {Z(t), t ≥ 0} = {|X(t)|, t ≥ 0} is called a Brownian
motion reflected at origin.

P (Z(t) ≤ y) = P (|X(t)| ≤ y)
= P (−y ≥ X(t) ≤ y)
= P (X(t) ≤ y)− P (X(t) ≤ −y)
= P (X(t) ≤ y)− P (X(t) ≥ y)︸ ︷︷ ︸

1−P (X(t)≤y)

= 2P (X(t) ≤ y)− 1

=
2√
πt

∫ y

−∞
e−x

2/2tdx− 1

E[Z(t)] =

√
2t
π

Var[Z(t)] = (1− 2
π

)t (< t)

Model 3. (Geometric Brownian motion) If {X(t), t ≥ 0} is Brownian motion,
then {Y (t), t ≥ 0} = {eX(t), t ≥ 0} is called geometric Brownian motion.

Moment generation function of X(t)

ψ(s) = EesX(t) = ets
2/2

and therefore
E[Y (t)] = E[eX(t)] = et/2
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Var[Y (t)] = E[Y (t)2]− et

= Ee2X(t) − et

= e2t − et

Model 4. (Integrated Brownian motion) If {X(t), t ≥ 0} is Brownian motion,
then

{Z(t), t ≥ 0} =
{∫ t

0

X(s)ds, t ≥ 0
}

is called integrated Brownian motion.

E[Z(t)] = E

∫ t

0

X(s)ds =
∫ t

0

E[X(s)]ds = 0

For s ≤ t

cov(Z(s), Z(t)) = E[Z(s)Z(t)]

= E

[∫ s

0

X(y)dy
∫ t

0

X(u)du
]

=
∫ s

0

∫ t

0

E[X(y)X(u)]dy du

=
∫ s

0

∫ t

0

min(y, u)dy du

=
∫ s

0

[∫ u

0

ydy +
∫ t

u

udy

]
du

=
∫ s

0

[
1
2
u2 + u(t− u)

]
du

= s2(
t

2
− s

6
)

Var[Z(t)] = t2(
t

2
− t

6
) =

t3

3

6.4 Brownian Motion with Drift

Definition 6.4.1. A stochastic process {X(t), t ≥ 0} is a Brownian motion
with drift coefficient µ if

(i) X(0) = 0;

(ii) {X(t), t ≥ 0} has stationary and independent increments;

(iii) X(t) ∼ N(µt, t).

Or X(t) = µt+B(t) where {B(t), t ≥ 0} is standard Brownian motion.
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Example 6.4.1. Consider a drifted Brownian motion {X(t), t ≥ 0} with drift
µ. Compute the probability that the process hits A before −B, where A,B > 0
are given.

Solution. Let P (x) = P{X(t) hits A before −B|X(0) = x}, where −B < x <
A. Then

P (x) =
∫ ∞

−∞
P (X(t) hits A before −B|(X(0) = x, Y = y)dFY (y) + o(h)

=
∫ ∞

−∞
P (X(t) hits A before −B|X(0) = x,X(h) = x+ y)dFY (y) + o(h)

=
∫ ∞

−∞
P (x+ y)dFY (y) + o(h)

= E[P (x+ y)] + o(h)

= E[P (x) + P ′(x)Y +
P ′′(X)

2
Y 2 + · · · ] + o(h)

= P (x) + µhP ′(x) + P ′′(x)
µ2h2 + h

2
+ o(h)

µP ′(x) +
1
2
P ′′(x) = 0

2µP (x) + P ′(x) = c1

d

dx
[e2µxP (x)] = c1e

2µx

P (x) = C1 + C2e
2µx

With the boundary conditions that P (A) = −1, P (B) = 0, we have

C1 =
e2µB

e2µB − e−2µA
C2 =

−1
e2muB − e−2µA

P (x) =
e2µB − e−2µx

e2µB − e−2µA

Starting at x = 0, the probability of reaching A before −B

P (0) =
e2µB − 1

e2µB − e−2µA

If µ < 0, letting B →∞

P (the process ever goes up to A) = e2µA

P

(
max
t≥0

X(t) < y

)
= 1− P

(
max
t≥0

X(t) ≥ y

)
= 1− e2µA

Therefore maxt≥0X(t) is an exponential random variable with parameter −2µ.
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Example 6.4.2. A stock call option with an exercise price A. The current
price of the stock of the stock is 0 and the price follows Brownian motion with
drift −d, d > 0. When should we exercise the option?

Solution. Suppose we exercise when the price is x(> A). The expected gain is
P (x)(x−A), where P (x) is the probability that the price ever hits A.

The gain function

f(x) = P (x)(x−A) = e−2dx(x−A)

Letting f ′(x) = 0 we have the maximum point x = A+ 1
2d .

6.5 Martingale and Brownian motion

Definition 6.5.1. A continuous-time process {X(t), t ≥ 0} is called a martin-
gale if E|X(t)| <∞ ∀t > 0 and E[X(t)|X(u), 0 ≤ u ≤ s] = X(s) ∀t ≥ s.

Proposition 6.5.1. Let {B(t), t ≥ 0} be a standard Brownian motion. Then
all the following processes are martingale:

(a) Y (t) = B(t)

(b) Y (t) = B(t)2 − t

(c) Y (t) = exp{cB(t)− c2t
2 } ∀c ∈ R

Proof. (a)

E[B(t)|B(u), 0 ≤ u ≤ s] = E[B(s) +B(t)−B(s)|B(u), 0 ≤ u ≤ s]
= B(s) + E[B(t)−B(s)]
= B(s)

(b)

E[B(t)2|B(u), 0 ≤ u ≤ s] = E[B(s)2 + 2B(s)(B(t)−B(s))

+ (B(t)−B(s))2|B(u), 0 ≤ u ≤ s]

= B(s)2 + 2B(s)E[B(t)−B(s)|B(u), 0 ≤ u ≤ s]

+ E[B(t)−B(s)]2

= B(s)2 + t− s

(c) Left as as exercise.

Definition 6.5.2. A random variable τ ≥ 0 is called a stopping time for a
stochastic process {X(t), t ≥ 0} if the event {τ ≤ t} is determined by {X(s), 0 ≤
s ≤ t} ∀t ≥ 0.
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Theorem 6.5.1. (Martingale Stopping Theorem / Optimal Sampling Theorem)
Let τ be a stopping time for a martingale {X(t), t ≥ 0} satisfying either

(i) τ is uniformly bounded, or

(ii) P (τ < +∞) = 1 and ∀t ≥ 0

|X (t ∧ τ)︸ ︷︷ ︸
min(t,τ)

| ≤ K

Then E[X(s)] = E[X(0)].

Example 6.5.1. X(t) = B(t) +µt where B(t) is a standard Brownian motion.
For A,B > 0 define stopping time T = min{t > 0 : X(t) = A or X(t) = −B}.
What is PA = P (X(τ) = A)?

Solution. By optimal sample, E exp{cB(T )− c2T
2 } = 1.

E[exp{cX(T )− cµT − cT 2

2
}] = 1

Take c = −2µ, E exp{−2µX(T )} = 1.

e−2µAPA + e−2µ(−B)(1− PA) = 1

PA =
e2µB − 1

e−2µB − e−2µA

Now {B(t), t ≥ 0} is martingale.

0 = EB(T ) = E[X(t)− µT ]

E[T ] =
1
µ

(APA −BPB)

=
Ae2µB +Be−2µA −A−B

µ[e2µB − e−2µA]
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Chapter 7

Introduction to Itô’s
Calculus

7.1 Stochastic Integration

Given a (standard) Brownian motion {B(t), t ≥ 0}. For fixed T > 0, define

L2
F (0, T ; R) =

{
{X(t), 0 ≤ t ≤ T}

∣∣∣∀t ∈ [0, T ],

X(t) is determined by B(s), 0 ≤ s ≤ t, and E
∫ T

0

|X(s)|2ds < +∞
}

For Xn, n = 1, 2, · · · , X ∈ LF (0, T : R), we say Xn
L2

−−→ X as n → ∞
if E

∫ T
0
|Xn(s) − X(s)|2ds → 0 as n → ∞. We are now to define stochastic

integration
∫ t
0
f(s)dB(s) for f ∈ L2

F (0, T ; R).
Step 1. If f is a simple process

f(t) = f0χ{t=0}(t) +
k−1∑
i=0

fiχ(ti,ti+1](t)

where 0 = t0 < t1 < · · · < tk = T , fi is a random variable determined by B(s),
0 ≤ s ≤ ti. Then define∫ t

0

f(s)dB(s) =
j−1∑
i=0

fi[B(ti+1)−B(ti)] + fj [B(t)−B(tj)]

if t ∈ (tj , tj+1].
Step 2. For any f ∈ LF (0, T ; R), ∃{fn} that are simple process such that

fn
L2

−−→ f as n→∞. Define∫ t

0

f(s)dB(s) = lim
n→∞

∫ t

0

fn(s)dB(s)

65
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∫ t
0
f(s)dB(s) is called the Itô’s integral. For any s ≤ t ∈ [0, T ]∫ t

s

f(r)dB(r) =
∫ t

0

f(r)dB(r)−
∫ s

0

f(r)dB(r)

Theorem 7.1.1. ∀f, g ∈ L2
F (0, T ; R)

(i) E
[∫ t

s

f(r)dB(r)
∣∣∣B(u), 0 ≤ u ≤ s

]
= 0, ∀0 ≤ s ≤ t ≤ T

(ii) ∀0 ≤ s ≤ t ≤ T

E
[∫ t

s

f(r)dB(r) ·
∫ t

s

g(r)dB(r)
∣∣∣B(u), 0 ≤ u ≤ s

]
= E

[∫ t

s

f(r)g(r)dr
∣∣∣B(u), 0 ≤ u ≤ s

]

(iii) E

∫ t

0

f(r)dB(r) = 0, ∀t ∈ [0, T ]

(iv) E
[∫ t

0

f(r)dB(r)
∫ t

0

g(r)dB(r)
]

= E

∫ t

0

f(r)g(r)dr, ∀t ∈ [0, T ]

(v) E
∣∣∣∫ t

0

f(r)dB(r)
∣∣∣2 = E

∫ t

0

|f(r)|2dr

Remark. By (i), X(t) =
∫ t
0
f(r)dB(r) is a martingale.

E[X(t)|B(u), 0 ≤ u ≤ s] = E

[∫ s

0

f(r)dB(r) +
∫ t

s

f(r)dB(r)
∣∣∣B(u), 0 ≤ u ≤ s

]
=
∫ s

0

f(r)dB(r) = X(s)

Definition 7.1.1. A multi-dimensional stochastic process
{B(t) = (B1(t), · · · , Bm(t))T } is called a Brownian motion if

(i) B(0) = 0;

(ii) {B(t), t ≥ 0} has stationary and independent increments;

(iii) EB(t) = 0, E[B(t)B(t)T ] = tIm×m ∀t.

Given an m-dim Brownian motion B(t) and f = (f1, · · · , fm) ∈ L2
F (0, T ; Rm)∫ t

0

f(s)dB(s) =
m∑
i=1

∫ t

0

fi(s)dBi(s) ∀t

Similarly for
∫ t

0

σ(s)︸︷︷︸
n×m

dB(s)︸︷︷︸
m×1

where σ(s) is n×m matrix-valued process.
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7.2 Itô’s Formula

Recall the deterministic case. If X(t) = X(0) +
∫ t
0
b(s)ds (or dX(t) = b(t)dt),

given F (t, x) ∈ C1([0, T ]× R)

dF (t,X(t)) =
∂F

∂t
(t,X(t))dt+

∂F

∂X
(t,X(t))dX(t)

=
(
∂F

∂t
+
∂F

∂X
b(t)
)
dt

or equivalently

F (t,X(t)) = F (0, X(0)) +
∫ t

0

(
∂F

∂t

(
s,X(s)

)
+
∂F

∂X

(
s,X(s)

)
b(s)

)
ds

Theorem 7.2.1. (Itô’s Formula) Let an n-dim stochastic process {X(t), t ≥ 0}
be given as

X(t) = X(0) +
∫ t

0

b(s)ds+
∫ t

0

σ(s)dB(s)︸ ︷︷ ︸
diffusion term

where b ∈ L2
F (0, T ; R2), σ ∈ L2

F (0, T ; Rn×m). Let F ∈ C1,2([0, T ]×R2) be given.

dF (t,X(t)) = Ft
(
t,X(t)

)
dt+ FX

(
t,X(t)

)
dX(t)

+
1
2

[
σ(t)TFXX

(
t,X(t)

)
σ(t)dt

]
dt

or

F (t,X(t)) = F
(
0, X(0)

)
+
∫ t

0

{
Ft
(
t,X(t)

)
+ FX

(
t,X(t)

)
+

1
2

Tr
[
σ(t)TFXX

(
t,X(t)

)
σ(t)dt

]}
ds+

∫ t

0

FX
(
s,X(s)

)T
σ(s)dB(s)

where FX =
(
∂F

∂X1
· · · ∂F

∂Xn

)T
FXX =

(
∂2F

∂Xi∂Xj

)
n×n

Example 7.2.1. Calculate E|
∫ t
0
σ(s)dB(s)|2.

Solution. Let X(t) =
∫ t
0
σ(s)dB(s), F (t, x) = x2.

X(t)2 = F (t,X(t)) =
∫ t

0

σ(s)2ds+
∫ t

0

2X(s)σ(s)dB(s)

E|X(t)2| = E

∫ t

0

σ(s)2ds
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Example 7.2.2. Calculate EeB(t).

Solution. Let X(t) = B(t) =
∫ t
0
dB(s), F (t, x) = ex.

eX(t) = F (t,X(t)) = 1 +
∫ t

0

1
2
eX(s)ds+

∫ t

0

eX(s)dB(s)

E[eX(t) = 1 +
1
2

∫ t

0

E[eX(s)]ds]

Let y(t) = E[eX(t)]

y(t) = 1 +
1
2

∫ t

0

y(s)ds

⇒
{
y′(t) = 1

2y(t)
y(0) = 1

y(t) = e
1
2 t

Example 7.2.3. Let dXi(t) = bi(t)dt + σi(t)dB(t), where i = 1, 2. Calculate
d[X1(t)X2(t)].

Solution. Take X(t) =
(
X1(t), X2(t)

)T , F (t, x1, x2) = x1x2.

d[X1(t)X2(t)]
= dF (t,X1(t), X2(t))

=
[
X2(t)b1(t) +X1(t)b2(t) +

1
2

(
σ1(t) + σ2(t)

)(0 1
1 0

)(
σ1(t)
σ2(t)

)]
dt

+
[
X2(t)σ1(t) +X1(t)σ2(t)

]
dB(t)

= X1(t)dX2(t) +X2(t)dX1(t) + σ1(t)σ2(t)dt

7.3 Stochastic Differential Equations

Consider the following stochastic differential equation

(∗) =

{
dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t)
X(0) = X0

or

X(t) = x0 +
∫ t

0

b
(
s, t(s)

)
ds+

∫ t

0

σ
(
s,X(s)

)
dB(s)

Definition 7.3.1. A stochastic process {X(t) ∈ Rn, t ≥ 0} is called a solution
to (∗) if
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(i) X(t) is Ft-adapted.

(ii) P
(
X(0) = X0

)
= 1

(iii) E
∫ t

0

[∣∣b(s), x(s)∣∣+ ∣∣σ(s,X(s)
∣∣2] <∞, ∀t > 0

(iv) P
(
X(t) = x0 +

∫ t

0

b
(
s,X(s)

)
ds+

∫ t

0

σ
(
s,X(s)

)
dB(s) ∀t ≥ 0

)
= 1

Moreover, (∗) is said to have a unique solution if for any two solutions x(t), y(t)
one must have P (x(t) = y(t) ∀t) = 1.

Theorem 7.3.1. If there exists L > 0 such that∣∣b(t, x)− b(t, y)
∣∣ ≤ L|x− y|∣∣σ(t, x)− σ(t, y)
∣∣ ≤ L|x− y| ∀x, y (Lipschitz condition)∣∣b(t, x)∣∣+ ∣∣σ(t, x)
∣∣ ≤ L(1 + |x|) ∀x (linear growth)

Then (∗) admits a unique solution {X(t), t ≥ 0} satisfying E sup
0≤t≤T

|X(t)|l ≤

KT,L, ∀ 0 < T <∞

E
∣∣X(t)−X(s)

∣∣l ≤ KT,l|t− s|l/2

where l ≥ 1.

Remark. (i) If the linear growth condition fail, we can have{
dX(t) = X(t)2dt
X(0) = 1

The only possible solution is X(t) = 1
1−t , which explodes at t = 1. There-

fore there is no solution.

(ii) If Lipschitz condition fails, we can have{
dX(t) = 2X(t)2/3dt
X(0) = 0

X(t) = (t− c)3 satisfies dX(t) = 2X(t)2/3dt ∀c > 0.

Take X(t) =

{
0 t < c

(t− c)3 t ≥ c
which is also solution.

Therefore there is no unique solution.

Example 7.3.1. Solve the Ornstein-Uhlenbeck equation{
dx(t) = µx(t)dt+ σdB(t)
X(0) = x0
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Solution.

dX(t)− µX(t)dt = σdB(t)

e−µt
(
dX(t)− µX(t)dt

)
= σe−µtdB(t)

d
[
e−µtX(t)

]
= σe−µtdB(t)

e−µtX(t)−X0 =
∫ t

0

σe−µsdB(s)

X(t) = X0e
−µt + σeµt

∫ t

0

e−µsdB(s)

A Challenge Left as an Exercise{
dΦ(t) = A(t)Φ(t)dt+ c(t)Φ(t)dB(t)
Φ(0) = I

Assume |A(t)|+ |c(t)| ≤ K.

1. Is Φ−1(t) exists?

2. Φ−1(t) satisfies what equation?


