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Chapter 1

Preliminaries

1.1 Probability

Probability space (Q2, F, P). Q is sample space, set of all possible outcomes of
a random experiment. Event F is a subset of 0, said to occur if the outcome of
the experiment is an element of E. F is a collection of events, and F is o-field.

F is called a o-field if the following holds.
(i) Qe F.

Remark. | () it A, B € F, then A\B € F.

(ifi) if A; € F, i=1,2,---, then [J°, € F.

Note. ’]—" = {Q, ¢} is smallest o-field. ‘

For each E € F, a number P(FE) is defined (P : F — R mapping), satisfying
the following.

(i) 0<P(E) <1
(i) P(Q) = 1.
(iii) For any sequences {E;}$2, C F, which are mutually exclusive,

P <G Ei> S P(E;)

i=1

P(A) =1 < A holds almost surely (a.s.).

Note. P(ANB) = P(A)P(B) < A and B are independent.
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Simple facts
1. If EC F, then P(E) < P(F).
2. P(E°)=P(Q\E)=1- P(E).

3. If {E;}7, are mutually exclusive,

=1 i=1

4. P(UZ,) < X2, P(E))

{E,}22, is increasing if E, C E,41 Vn.
decreasing if £, DO E,+1 Vn.

Let {F,}22, be increasing. Define lim,, .o, F, =
decreasing. Define lim,, .o, F, =)

[eS)
n=1-"—-""1"

(U)o

(Boole’s Inequality)

Unzi En-

E

E

Proposition 1.1.1. If {E,}52, is either increasing or decreasing, then

P ( lim En) — lim P(E,)

n—oo n—oo

Proof. Suppose {E,,}52, is increasing.

Define F; = E;
F,=E\E, 1=E,NE._{,n=2,3,---

{F.}5%, are mutually exclusive, and

n n

UFZ:UEi, n=1,2---
=1 =1

i=1

P(1im E,) = P(QE) :P<GE—

n—oo

= lim P(E,)

n—oo

lim " P(F;) = lim P(
r=1

)

K2

=2 _P(F)

-

—

i=1
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Example 1.1.1. Consider a population consisting of individuals able to pro-
duce offspring of the same kind. The number of individuals initially present,
denoted by Xj, is called the size of the zeroth generation. All offspring of the
zeroth generation constitute the first generation and their number is denoted
by X;. In general, let X,, denote the size of the nth generation.

Let E, ={X,,=0},n=0,1,2,---. E, Tor E, C Ep41.

If lim,, oo P(E,,) exists,

Jm P(E) = P (Jin )
= P (D{Xn :0}>
n=1

= P(the population ever dies out)

Theorem 1.1.1. (Borel-Cantelli lemma) Let {E,}52, denote a sequence of
events. If Y .0 P(E;) < oo, then

P(A0E)-»

n=11i=n

Proof. Let F,, =2, E;. F, |.

P (ﬁ Fn> - P (nler;O Fn) = lim P(F,)
n=1

= lim P ([j E) gnlilroloip(Ei) =0

n—oo

O
Note. ﬂ U E; =limsup E; = 4@ E;
n=1i=n i—00 e

Remark. m U E; = {an infinite number of E; occurs}

n=1i=n

1.2 Random Variable

A random variable (r.v.) X is a mapping from  to R, satisfying {X < a} € F,
Va € R. A distribution function F' of the r.v. X, F(z) £ P(X < z), Vz € R,
and F(z) 21— F(X) = P(X > x).
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A r.v. X is said to be discrete if its set of possible value is countable.
In this case
F(z)=) P(X=y) Vo eR

y<z

A rv. X is said to be continuous if there is a function f(x) called the prob-
ability density function, such that

F(a):P(XSa)z/:l f(z)dx Ya € R

dF(x)

@)= = P)

The joint distribution function F' of two r.v.s X and Y is
F(z,y) = P(X <2,Y <y) Y(z,y) € R?

Let Y, 1 00, B, 2 {X <2,Y <y,} 1.

n=1
Fx(z)=P(X <2)=P(| J E,) = lim P(X <2,V <y,) = lim F(z,y,)
n=1

Two r.v.s X and Y are called independent if

F(z,y) = Fx(x)Fy(y)

X and Y are called jointly continuous if there exits a function f(z,y) called
the joint probability density function, such that,

Pexsay <y = [ [ i vy e w?

1.3 Mathematic Expectation

The mathematical expectation or mean of a r.v. X, E[X], is defined by

E[X] £ / zdF(x) = Zoff zP( ) 1 ?S dlscr.ete
oo zf(z)dz if X is continuous.

Let h: R — R. The (measurable) function h(X) is r.v.

Y h(z)P(X =z) if X is discrete.
JZ h(@)f(z)de  if X is continuous.

E[h(X)] = [ " hw)dF () = {



1.4. MOMENT GENERATING FUNCTION
h:R" - R

E[h(XhXQa T 7Xn)]

/ h(xlax%"’ 7xn)dF(xlax27"' 7:1771)

The variance of r.v. X
Var(X) £ E{(X — E[X])*} = E[X?] — (E[X])?
Standard deviation ox = /Var(X).

The covariance of two random variable X and Y

cov(X,Y) £ E[(X - EX))(Y - E(Y))]
— E[XY]- E[X]E[Y]

E
X and Y are called uncorrelated if cov(X,Y) =0 or E[XY] = E[X]E[Y].

)

Properties of expectation and variance

1. ElaX + Y] = aE[X] + BE[Y] Vo, 3 € R.
2.

Var(z Xi) = Z Z COV(Xiv Xj)

i=1 i=1 j=1

= ZVar(Xi) + ZCOV(Xia X;)

i#]

3. E[XY] = E[X]E[Y], if X and Y are independent.

1.4 Moment Generating Function

The moment generating function of a r.v. X

Vx(t) = (t) 2 Ele'X] = /_OO e dF(z), teR
W) = [ sear(s) = BLXe) ¥/(0) = BIX]
00 = [ semar() = Bt ¥(0) = BX?

Remark. |¢v™(0) = E[X"], n >1
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The moment generating function of r.v.s X1, Xo, -+ , X,
Y(tr,ta, - tn) £ E {6 thin}

Example 1.4.1. X7 ~ N(u1,0%), Xo ~ N(uz2,03).
X1 and X5 are independent.

Uy xa (1) = Bl HX0)] = BletretXa) = Bl Bl

= o, (O, (1) = ety T
= X1+ Xo ~ N(py + pig, 05 +03).
Define the characteristic function of X,
ox(t) = of0) = Bl = [~ e
where i = v/—1.
Note. | e’ = cosf + isinf ‘

Remark. ’ ¢ always exists and uniquely determines the distribution of X.

The joint characteristic function of X1, Xo, -+, X,

¢(t17t27 e ;tn) = E[elZlel tan]

1.5 Conditional Expectation

P(Ey N B»)
P(E»)

Remark. |1t P(Ey N Ey) = P(Ey)P(E,), then P(E\|Ez) = P(E:). |

P(E1|E2) = VE1, Es € F with P(Eg) >0

Let X and Y be two discrete r.v.s, the conditional probability mass function
of X given Y is defined to be,

P(Y =y)

PX=z|]Y =y) =

provided that P(Y =y) > 0.
The continuous distribution function of X given Y = y is defined to be,

Flzly) =) P(X=zY =y)

z<x

The conditional expectation of X given Y is

BalY =y) = / wdF(oly) = 3" P(X = 2]Y =)
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Let X and Y be jointly continuous r.v.s having joint probability density
function f(x,y). The conditional density function of X given Y = y is defined
for all y such that fy(y) > 0 by

f(@,y)
Iy (y)

mmyzwzéjmwm

The conditional distribution function of x given Y =y is

me=[%NMMz

The conditional expectation of X given Y =y is,

flzly) =

o0

BOXY =y) = [ af(ely)ds

Define the following r.v denoted by E[X|Y].
EX|Y]=EX|Y =y] ifY =y
Theorem 1.5.1. For all r.v.s X and Y,
BIX] = BLEXY)) = [ BGlY = y)dFy ()
Corollary 1.5.1. 1. IfY is discrete, then

E[X]=) E(X[Y =y)P(Y =y)
y
2. IfY is continuous, then

E[X] :/ E(X|Y =y)fy(y)dy
Proof of the case when both X and Y are discrete.

D EX[Y=y) =) Y aP(X =zlY =y)P(Y =y)

*ZZmP(x::c,Y Y)
= x ZP(X:x,Y:y)
:ZxP(X:x)

= E[X]



Corollary 1.5.2. 1.

n

>ox

i=1

E

E

>x
i=1

Y=y

Y

I

~
Il
—
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I

<
Il
—

E[X;]Y =y]

E[X;|Y]

Corollary 1.5.3. Let A€ F andY be a r.v., then

P(A) = /

Proof. Define a r.v. X by

oo

P(A]Y = y)dFy (y)

o0

0 otherwise

¥ = {1 if A occur

Note. | X =14 = xa (indicator function) ‘

Note.

P(A) =

PY(A) = P(A]Y =)
EY(X) = B(X|Y =)

E[X]

Theorem 1.5.2. For all r.v.s X, Y,W, we have

E[X|W] = E[E(X|W.Y)[W]

= E[E(X|W)[W,Y]

Example 1.5.1. A miner is trapped in a mine containing three doors. The first
door leads to a tunnel that takes him to safety after two hours of travel. The
second door leads to a tunnel that returns him to the mine after three hours
of travel. The third door leads to a tunnel that returns him to the mine after
five hours. Assuming that the miner is at all times equally likely to choose any
one of the doors. What are the expected time and its variance when the miner
reaches safety?

X : time when the miner reaches safety.

Y :

# of door be chosen.
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3
Ele"™] =Y E[e"|Y =i|P(Y =)
i=1
By =1] = *
E[eta:|Y _ 2] — E[et(3+$’)] _ eStE[etac]
Ele'|Y = 3] = e’ Ele']

1 .
- 62t+€3tE[eta:]+e5tE[etz]>)

Ble] = 5

. E2t
E[e OU] = 3 _ 3t _ bt :1/1X(t)

E[X] =4/(0) = 10 (hrs)
Var[z] = E[X?] — (Ex)? = ¢"(0) — 100

1.6 Exponential Distribution

A continuous r.v. X > 0 is called to have an exponential distribution with
parameter A > 0 if its density function is

{)\e” x>0

f@ =9y 2 <0

or the distribution function is

1— 67)\1 x> 0
Flo = {0 z <0
»(t) = Ele!*] = /0°° oA = - A :
Elz] =¢'(0) = % Vel = L
Recall
F(t)y=1-F(t)=P(X >t) =
F(t+s)=F(t)F(s) Vt,s > 0
P(X>t+s)=P(X >t)P(X > s)
_P(X>t+s,X>1)
P(X >t)

=P(X >t+s|X >t) Vt,s >0 (ageless or memoryless)
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Example 1.6.1. Consider a bank having two tellers, and suppose that customer
A enters the bank he discovers that B is being served by one of the tellers and C
by the other. Suppose that A will be served as soon as either B or C leaves. If
the amount of time a teller spends with a customer is exponentially distributed
with mean 1/X, what is the probability that, of the three customers, A is the
last to leave the bank?

If B and C are independent, the probability is 1/2.

Theorem 1.6.1. The exponential distribution is the only memoryless nonneg-
ative r.v. whose distribution function is right continuous.

Proof. Let g(t) : P(X >t). Then g(t+ s) = g(t)g(s) Vt,s >0

g(x) = g(1)® V rational number z

I
g(z) = g(1)° Yz e R*
— ezlng(l)
P(X <z)=1-¢e"* where A = —Ing(1). O

Consider a continuous r.v. X > 0 having density f and distribution F' =
1 — F. The failure (or hazard) rate function,

Interpretation.
P t,t+ dt t)dt
(@€ ttrdn) _ fOd_ o
P(X >1) F(t)
A(t) : the probability intensity that a ¢-year old item will fail.
For an exponential r.v.

P(x e (t,t+dt)|x >1t) =

A e
AW = F(t) T et A
A1) =~ F()
InF(t) —InF(0) = — /t A(s)ds
0
F(0)=P(X >0)=1
= F(t) — e fot A(s)ds
=Ft)=1- e~ Jo As)ds
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1.7 Some Important Inequalities

Lemma 1.7.1. (Markov’s inequality) If X > 0 is r.v., then Va > 0

Pz >a) < E[jq
Proof.
alipse < (a.s.)
E[a 1(I>a)} < E[X]
aP(x > a) < E[z]
O
EfX]

Remark. | P(|z] > a) <

Proposition 1.7.1. (Chemoff bound) Let X be a r.v. with M(t) = E[e""].
Then Ya > 0,

<e “M(t) vt >0
P(X <a)<e ™™M(t) Vt <0
Proof of the case t > 0.

E [etr]
eta

P(X >a) = P(e'™ > ') <

=e " M(t)

Example 1.7.1. Let X be such that P(X = z) = e_AAA—T, r =012+,
M(t) = M= Take j > A\ > 0.

P(X >j)< eIt =D vyt > 0
Take g(t) = Xe! — jt, g'(t) = Xe! —j =0, g""(t) = X" > 0= t* =In £.

e M e)?

P(X > j) < exp(—j In(j/A) + A"V - 1)) = 7

Proposition 1.7.2. (Jensen’s Inequality) If [ is a convex function, then
E[f(X)] = f(E[X])

provided the expectation exists.
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Proof. Assume f is differentiable. Take u = E[X]

FX) > f(p) + f () (X = p)
Elf(X)] > f(p) + f' () (E[X] = )

= f(p) = f(E[X])
O
2
Note. fla) ==
EIX]* > (B[X])?
fle)=2"p>1,2>0
E[|X[] > (E|X|)P
E|X| < (E|X|")'/? vp =1
Proposition 1.7.3. (Hélder’s Inequality)
E|XY| < (E|X]?)» (B|Y]%)7
Vp,g > 1 with%+%:1
Proof. First we have
ab b
ab< —+ — Va,b>0
p q
Take f(z) = —Inx, > 0, convex.
1 1 1 1
—In(=a? + -07) < ——Ina? — —Inb? = —In(ad)
p q p q
Take
X
po B
(E|X][P)>
Iy
(E|Y]0)7
Ur  ve | X|P Y |e
Uov<—+—=
pq (EX[P)p  (EY[?)p
1 1
EUV|<-4-=1
p q
O

p=q=2,

1 1
Remark. |E XYH = E|XY| < (E|X|2)2<E‘Y‘2)2

(Cauchy-Schwarz’s Inequality)
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1.8 Stochastic Process

A stochastic process X = {X(¢),t € T} is a collection of random variables.
T: index set. ¢ € T: time. X (t): state of the process at time t.
X is discrete-time if 7" is countable.
X is continuous-time if 7" is continuum.
w e
X (t,w): mapping from T' x Q@ — R.
Any realization of X is called a sample path.

X(t,ywo): T —R

X is called to have independent increments if for all tg < t; <ty < --- < t,,
the r.v.s, X(t1) — X(to), X(t2) — X(t1), ..., X(tn) — X(tn—1) are mutually
independent. It is said to have stationary increments if X (¢t + s) — X (¢) has the
same distribution for all ¢.
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Chapter 2

Poisson Process

2.1 Definition

A stochastic process {N(t),t > 0}, said to be a counting process if it satisfies
1. N(t) > 0.
2. N(t) is integer valued.
3. N(s) < N(t)its <t

4. For s < t, N(t) — N(s) equals the number of events that have occurred in

the interval (s,t].

Definition 2.1.1. A counting process N(t),t > 0 is called a Poisson process
having rate A > 0, if

(i) N(0) =0.
(ii) N(¢) has independent increments.

(iii) Vs,t >0,
P{N(t+s) — N(s) =n} =e %

where n =0,1,2,---
Theorem 2.1.1. Definition 2.1.1 is equivalent to the following.

(i’) N(0) = 0.

~

(ii’) N(t

~—

has stationary and independent increments.
(i5i’) P(N(h) =1) = Ah+ o(h).
(iv’) P(N(h) > 2) = o(h).

15
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Proof of (V) - (iv’) = (i) - (i). Let P,(t) = P(N(t) =n). Goal is to show

o) n 00"

where n =0,1,2,---

)= 2)
P(N(h) =1)+ P,(t)P(N(h) = 0) + o(h)

|
"

Po(t + h) — P(t) = Pu_y () — Po(t)Ah + o(R)

PL(t) = =AP,(t) + AP, (1)
P, (0) = P(N(0) =n) =0

2.2 Interarrival and Waiting Times

Consider a Poisson process {N(¢),t > 0}.
X1: the time of the first event.
X, the time between the (n — 1) < ¢ and the nth events.
Sequence of r.v.s {X,}52: sequence of interarrival time.
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= P(N(t) =0)
EPRSY
Proposition 2.2.1. X,,, n = 1,2,---, are independent identically distributed

.. . . 1
(i.i.d.) exponential r.v.s having mean .

Remark.

Sp =i, X, n > 1: the arrived time of the nth event, or the waiting time
until the nth event.

which upon differentiation yields that the density function

falt) = i [—Ae_Atw + /\e_M/\j_ltj_l}

2 G-
_ — e (At) — ()
= -\ Z e T + A Z e T
j=n J j=n—1 J
Y (At)"—1 >
= Je 7(71 — ) t>0

Note. ’ S, follows gamma distribution. ‘

Another definition of the Poisson process.
Given {X,,}°; i.i.d. exponential with mean 1/A.

i=1

N(t) = max{;l 2 S, <t}
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Example 2.2.1. Given 0 < s < t, compute P(X; < s|N(t) =1).

P(Xl < S,N(t) = 1)
P(N(t) = 1)
P(N(s) =1)P(N(t) — N(s) =0)
P(N(t) =1)
e—)\t()\s) . e—)\(t—s)
e M\t

P(X1 < S|N<t) = 1) =

S

t

2.3 Nonhomogeneous Poisson Process

Definition 2.3.1. A counting process {N(t),t > 0} is called a nonstationary
or nonhomogeneous Poisson process which intensity function A(¢), t > 0 if

1. N(0) = 0.
2. N(t) has independent increments.
3. P(N(t+h)— N(t) =1) = At)h + o(h).
4. P(N(t+ h) — N(t) > 2) = o(h)
Theorem 2.3.1. For a nonhomogeneous Poisson process {N(t),t > 0},

P(N(t+5) — N(t) = n) = exp ( /t o )\(r)dr) M

n!

where n =10,1,2,---

2.4 Compound Poisson r.v.s and Processes

Let X1, X5, -+ be a sequence of r.v.s, i.i.d., having distribution F', and let N
be a Poisson r.v. with mean A independent of {X,,}22.

W = Zivzl X; is called a compound Poisson r.v. with Poisson parameter A
and component distribution F'.
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n=0

oo n 3 An
_ ngo iI;[lEetXZ . AH

oo o A"
:;::O[T/Jx(t)] e AH

— oA x (1) — AWx(D)-1)

Yy (8) = APXOTD A (1)
E[W] = 1y (0) = Mk [0] = AE[X]
Var[W] = AE[X?]

Proposition 2.4.1. Let W = Zf\il X; be a compound Poisson r.v. with Pois-
son parameter A and compound distribution F', and X be r.v. having distribution
F that is independent of W. Then for any measurable function h(z).

E[Wh(W)] = AE[Xh(W + X)]

Proof.
E[Wh(W)] = g)E[Wh(W)N = n]P(N =n)
- éE[g Xih(Jz: Xj)] %e_A
— e nf% % Z; E Xih(;:;xj)}
— e ni % nE [Xih(j: Xj)]
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N /E[th(ng)

L= }dm)

AE[Xh(W + X)] = A / Elxh(W + 2)|X = 2]dF(z)
A/ E[h(W + 2))dF (z)
7A/ Z { ZX +1:>’Nn}P(N m)dF(x)

m=0

m

_ AZ/mE{ ZX]Jr:E)]dF()

O
Proposition 2.4.2. Under the assumption of Proposition 2.4.1, we have
n—1 n—1 ) )
EW" =X)" ( _ )E[WJ]E[X"—J], n=12,---
=0\ 7
Proof. Take h(x) = 2" L.
EW"] = E[Wh(W)]
= AE[X(W + X)" ]
n—1 n—1 )
=AE > () )WJX"J
=0~
n—1 n—1
= ( ) )E[W]]E[X"_j]
=~/
O
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Corollary 2.4.1.

PO = 67>\

)\ n
P,=- jo P >
~ ana]Pn j n>1
J=1
Proof. Py = P(N =0) =e~*. Fix n > 1. Define

0 ifx#n 1
h(l’) = { 1 = ﬁX{W:n}

= ifzx=n
n

1
Remark. |Wh(W) = Wﬁx{wzn} = X{W=n}

P, =P(W =n) = Elxqyw=n}] = E[Wh(W)]

= AE[Xh(W + X))
=AY BIXA(W + X)[X = flay BV + ) = X
j=1
"1 , 1
= )\ZEJP(W:n—j)aj = —X{W=n-j}
j=1
P
= - Z]ajpnfj
n =
O
Example 2.4.1. Let X; =1=W = N.
P(N =0)=¢*
PR
j=1
A A A n
=ZP, == A “P,_o= - 2. A i.po_)‘iefk
n n—1 n n—1 1 n!
—_———

Definition 2.4.1. A stochastic process {X(¢),t > 0} is called a compound
Poisson process if X (t) = ZN(f) X;, where {N(t),t > 0} is a Poisson process

1=

and {X;}5°, is a family of i.i.d. r.v.s that independent of {N(t),t > 0}.

Example 2.4.2. An insurance company receives claims that arrive at a Poisson
rate X\. Suppose that amounts of claims form a set of i.i.d. random variables that
is independent of the claim arrival process. If X (¢) denotes the total amount of
claims by time ¢, then {X(¢),t > 0} is a compound Poisson process.
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2.5 Conditional Poisson Processes

Let A > 0 be a r.v. having distribution G and {N(t),t > 0} be a counting
process such that given A = A, {N(t),t > 0} is a Poisson process having rate A.

P(N(t +5) — N(s) = n) = /OOO P(N(t +5) — N(s)|A = NdG(\)

L[ e MO
- /0 R Ay e10))

n!

The processes N (t),t > 0 is called a conditional Poisson process.

Note. ’It is not a Poisson process. ‘

Ae(MA+dN\N(t) =n)
P(N(t)=n

e—)\t

P(A € A+ dV|N(t) = n) = 20

——(\)"dG()
0

n!

T o= At(AE)"
/ ———dG()N)
0

n!

SPRYE
/0 RGOSy

n!

= P(A<z|N(t)=n)=

Example 2.5.1. Suppose that, depending on factors not at present understood,
the average rate at which seismic shocks occur in a certain region over a given
season is either A; and Ag. Suppose also that it is A\; with probability p and Ay
with probability 1 —p. A simple model for such a situation would be to suppose
that {N(t),t > 0} is a conditional Poisson process such that A is either A\; or
Ao with respective probabilities p and 1 — p. Given n shocks in the first ¢ time
units of a season, what is the probability that it is currently a A; season and
what is the distribution of the time from ¢ until the next shock?

P(N(t) = n|A = \)P(A = \p)

P(A = \|N(t) = n) =

P(N(t) =n
pef)‘lt (Alt)
_ n!
S e at)” gt (Pat)”
pe H e

_ peiAltO\tt)n
pe M) + (1= p) M (gh)"

(1>

Ptn() 2 P(IN(t)

n)
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P(time from ¢ until next shock < z|N(¢t) =n)
A

_ po(a)
= P""(A|A = \)PP"(A = Ap) + PP (AJA = M) PP7(A = )y)
(1 — e~ 1) pert (A 1)™ + (1 — e 27) (1 — p)e 2t (\at)”
pe= Mt (A1) + (1 — p)e— 22t (\gt)”

2.6 Introduction of Renewal Processes
Let {X,,n=1,2,---} be a sequence of nonnegative i.i.d. r.v.s with a common
distribution F'.

Assume F(0) = P(X,, =0) < 1,
0<p2 E[X,] < .

Define
Sop=0

n
Sn:ZXz n:1’2,...
i=1

Let N(t) £ sup{n: S, <t}.

Definition 2.6.1. The counting process {N(t),t > 0} is called a renewal pro-
cess.

S, : the time of the nth event or renewal.
X, : the interarrival time between (n — 1)th and nth events.

Sy 1
— == ZXi — u>0asn—ooas. by strong law of large number
n n —

=5, —o0asn — 0o
= N(t) = max{n: S, <t}

In a finite time of period, there are only a finite number of renewals.

Nit)y>n& S, <t
P(N(t)=n)=P(N(t) >n)—P(N(t) >n+1)
= P(S, <t)— P(Sp+1 <)
— Fu(t) — Fura (1)
where F), is the distribution function of S,,.

E[N(t)] £ m(t) is the renewal function.



24

CHAPTER 2. POISSON PROCESS



Chapter 3

Discrete-Time Markov
Chains

3.1 Definition

Let {X,,n = 0,1,2,---} be a (discrete-time) stochastic process taking on a
finite or countable number of possible values, say, {0,1,2,---} — state space.
If X,, = i, then the process is said to be in state i at time n. Suppose

P(Xpp1 =Xy =4, Xn1 =in_1,---, X1 =11,X0 = ip) = P
for all states ig,%1, -+ ,in—1,%,J and all n > 0. Then {X,,n > 0} is called a

(discrete-time) stationary Markov chain.

Markov property: The conditional distribution of any future state X, 1,
given the past state Xo, X1, -+, X,,—1 and the present state X,,, is independent
of the past states and depends only on the present states.

{P;;} satisfies

Py >0

iﬂjzl i=0,1,2,-

j=0

(One-step) transition probability matrix

Po P P ... Py
P=|:
Py P P; Pij

o0 X 00

25
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Example 3.1.1. (General Random Walk) Let {X;}$2, be i.i.d. with
P(Xi=j)=ua;,j=0+1,42,...

Let So =0, S, =Y ", X;, {Sn,n >0} is a Markov chain.

Pj = P(Sp41 =3|Sn = 1)
=P(X,=j—1)

= a’j*i

Example 3.1.2. (The M/G/1 Queue) Customers arrive at a service center
according to a Poisson process with rate A. There is a single server and those
arrivals finding the server free go immediately into service; all others wait in line
until their service turn. The service time of successive customers are assumed
to be independent random variables having a common distribution G; and they
are also assumed to be independent of the arrival process.

X, © # of customers left behind by the nth departure, n = 1,2, ...
Y, : # of customers arriving during the service period of (n + 1)st customer.
S, : service time of the nth customer.

v fXa 1wy, X, >0
"y, if X, =0

{X, :n > 1} is a Markov chain.

P =)= [ T P = j[Suss = 2)dG(a)

oo )\ n
:/ ( aj') e*)\sz(x) j:O,LQ,...
0 J:
POj:P(Xn+1:j|Xn:0):P(Yn:j) J=0,1,2,...
Pjj=PXn1=jlXn=0)=PY,=j—i+1) i=12,.. jzi-1
Pi=0 1 =1,2,... j<i—1

3.2 Chapman-Kolmogorov Equations
n-step transition probabilities
Pi(j?q’) = P(Xomin = j|Xm = 1)

where n > 0, 4,5 > 0.
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Theorem 3.2.1. -
m+n n m
Pi(j ) _ Pz'(k )Plgj )
k=0
Vn,m >0, Vi,j >0

Proof.

PU) = P(Xpyn = X0 = i)

:ZP(XM+n:j|Xn =k, Xo=1)P(X,, = k| X0 =1)

P(Xin = 1X0 = K)P(X, = K|Xo = )

Il
e T

>
Il
o

M

=~
Il
<]

n-step transition matrix
P = (P
p(mtn) — p(n) p(m)
P®M=p.pr-Y—...—p.pP...P=P"

3.3 Classification of States

State j is said to be accessible from state i if Pi’; > 0 for some n > 0. Two state
1 and j accessible to each other are said to communicate and we write 7 < j.

Proposition 3.3.1. Communication is an equivalence relation. That is
(i) i —i;

(ii) if i < j, then j < i;

(iii) if i < j, and j < k, then i < k.

Proof. (i),(ii) are trivial. For (iii) Im,n > 0, such that Pi(;n) > 0, P;:) > 0.

m+n) Z P(m)P n)

) i
> PP >0
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Two states that communicate are said to be in the same class. The Markov
chain is said to be irreducible if there is only one class.
Given two state ¢ and j. Define fi(f) the probability that starting in ¢, the

first transition into j occurs at time n, n =0,1,2,... ( ,L-(]Q) =0,1# j; fi(,io) =1)

U = P(X =, X # 5, ¥k =0,1,...,n — 1|Xo = i)
fij =0, fi(f) : the probability of ever making a transition into j, given
starting in 7. f;; > 0 < j is accessible from 1, for ¢ # j.

State j is called recurrence if f;; = 1, and transient if f;; < 1. A recurrence
state j is called absorbing if P;; = 1.

Theorem 3.3.1. State j is recurrence iff -, Pl-(f) = +o00.
Proof. We want to show j is recurrent iff
E[# of visits to j|Xo = j] = 400

If j is recurrent then w.p.1 the number of visits to j will be infinite.
If j is transient. At each time the process returns to j there is a positive
probability 1 — f;; > 0 that it will never return again.

Bernoulli trial: “success” if it will never returns;
“failure” if it will return.
number of visits to j = the trial number on which the first success occurs.

1
E[# of visits to j|Xo = j] = 7 < 400
—Jij

E[# of visits to j|Xg =j]| = FE

D Xixa=iXo = J']
n=1

= Z Elx(x,=j}| X0 = j]

=1

> P(Xy = j1Xo = j)

n=1

3

O

Corollary 3.3.1. With probability 1 a transient state will only be visited a finite
number of times.

Corollary 3.3.2. A finite-state Markov chain has at least one recurrent state.

Proof. Suppose the states are 1,2,..., M. With probability 1, after a finite
number of time T;, state ¢ will never be visited, i = 1,2,..., M.
Let T' = Ef\il T;. After T no state will be visited. Contradiction. O
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Corollary 3.3.3. Ifi is recurrent (resp. transient) and i < j, then j is recur-
rent (resp. transient).

Proof. Let m and n be such that Pi(jn) > 0, Pj(im) > 0. For any s > 1,

(m+n+1) Z P(m)P( )P(”)

(m) (s) p(n)
2 Py Py Py

s=1
O
State 7 is said to have period d is d is the greatest common divisor of those

n > 1that P > 0. (It P{" = 0¥n > 1, then the period is defined to be +00.)
A state with d = 1 is said to be aperiodic.

Example 3.3.1. Consider a Markov chain with the one-step transition matrix.

0o 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
o 0 1 0

Py =0, Py =1>0,PY =0, By > 0.
{(n>1PY >0} ={2,4,6,...}. d=2.
Example 3.3.2.

04 06 O
02 05 0.3
0.1 0.7 0.2

P =04>0
d = 1. Aperiodic.

Example 3.3.3. (Simple Random Walk) Consider an Markov chain with state

space {0,£1,+£2,...} and transition probabilities P, ;11 = p, Pi;—1 = 1 — p,
i =0,£1,£2,... where 0 < p < 1. This is an irreducible Markov chain. d = 2.

PégnJrl) 0
R <2n>p”(1 —p)" = Ei?))zl p=p)"

Sterling’s estimation

Remark.
nl ~n" T2 e\ /on
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(2n)! (2n)2nH1/2 e=20\/og
' T2t p—2n.fon

[p(1=p)]"
= =l -p)" (¥
4p(1—p) <land 4p(l —p)=1iff p= 1.
(i) Ifp=3, (x) = \/% = 0 is recurrent.

(i) p#1, (x)= w = 0 is transient.

™

3.4 Limit Theorem

For a state j, define
00 if j is transient.
My {Z;’f_l nf;?) if j is recurrent.
;5 is expected number of transition needed to return to state j.
Theorem 3.4.1. Ifi < j then
(1)

1
lim — Y P =
nangonZ

(i) If j is aperiodic, then

1
lim Plg)——:ﬂj
oo Hjj

Definition 3.4.1. If state j is recurrent, then it is said to be positive recurrent
if p1j; < 400, and null recurrent if p;; = +00. A positive recurrent, aperiodic
state is called ergodic.

Definition 3.4.2. A probability distribution {P;j,j > 0} is called stationary
for the Markov chain if P; = > P;P;;, Vj > 0.

Corollary 3.4.1. If {P;,j > 0} is stationary, then

1] ?

oo
P =Y PP Vi >0,¥n>1



3.4. LIMIT THEOREM 31

Proof.

If the distribution of X is stationary, P; = P(Xo = j), then the distribution
of X,, is stationary. The proof is omitted here.

Theorem 3.4.2. A irreducible, aperiodic Markov chain belongs to one of the
following two classes:

(i) Fither the states are all transient or all null recurrent; in this case, P( ™,
0 as n — oo for all i, j and there exists no stationary distribution.

(it) Or else, all states are positive recurrent, that is m;; = lim, oo Pz-(j") > 0.
In this case {mj, j > 0} is a stationary distribution and there exits no other
stationary distribution.

Proof. Step 1 Prove if j is positive recurrent, and k — j, then k is also positive
recurrent.

m; = lim Pl( n) >0

Let m be such that Pj(;n) > 0. Then Pf,;ﬂrm) > Pi(J?z)Pj(,T)

me= tim PY > (1im PY) PR >0

n—oo

Step 2 Prove that if the M.C. is positive recurrent then {Wj 7>0

Zl?;o”k, N }



32 CHAPTER 3. DISCRETE-TIME MARKOV CHAINS

is a stationary distribution.

M [e%S)

SR <y P =1  wM

7=0 7=0
M
Zﬂ'j <1 YM = Zﬂ'j <1
7=0

0o M
Py =N PPy =Y PYPRy VM
k=0 k=0

M o)
TFjZZﬂ'kij VM =>7TjZZ7Tkij
k=0 k=0

If mj > 327 mx Pyj for some j,

o0 o0 o0
Z’/Tj > ZZWkij
7=0

=0 k=0

ZZM Zij

=0

k=0
o0

= E 7, = contradiction.
k=0

Step 3 Let {P;,j > 0} be any stationary distribution. Then by Corol-
lary 3.4.1

0o M

D (n)pB ()5

P;=Y PP > PP VM
i=0 i=0

oo
:>Pj ZZTI’]’PZ‘Zﬂ'j
=0

On the other hand

M 00
P3P S,
=0 i=M+1
M oo
<> PP+ Y P VM

=0 i=M+1
M [eS)

iPZSZT(j?J—F Z P’i VM
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Let M — o0 =
oo
Pj < Zﬂ'jpi =T
i=0
T
-
> k0 Tk

Step 4 If all the states are transient or null recurrent, and {P;,j > 0} is a
stationary distribution. By Corollary 3.4.1, P; = 0 Vj. Contradiction.

O

Corollary 3.4.2. For case (ii) in Theorem 3.4.2, the limiting probability are
obtained by solving

Z;ﬁoﬂi =1

Example 3.4.1. (Weather Chain) Consider transition matrix

04 06 O
0.2 05 03
0.1 0.7 0.2

7w = (7o + m + m2)
w9 = 0.4mg + 0.2 + 0.179
w1 = 0.6m + 0.571 + 0.779
mo = 0.3m1 + 0.279
1l=mg+m +mo
= WOZEW1=4—8W2:§
85 85 85
Example 3.4.2. (The M/G/1 Queue)

aj:P(Yn:j):/ e f') dG(z),j =0,1,2,- -
O .

Poj:aj ]20

Pij:aj,i+1 221,]22—1

PZ‘J‘:O 1>1l,5<1—-1

Jj+1
T = ToQj; + E Q5 —i+1, ] = 0, ].,2,‘ c
i=1

Introduce the generating function.

m(s) = Zﬂjsj, A(s) = Zajsj
j=0 j=0
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oo Jj+1
7T(S) = E Toaj + E T —i+1 s’
j=0 i=1
oo j+1

= 7TOA(S) + Z Z Fiaj_i+15j

§=0 i=1

o) o]
= 71'014(8) + Z Z 7Tiaj_,'+13j

i=1 j=i—1

= 7TOA(8) + 8_1 Zﬂ'isi (
=1

J

0o
i+l
E aj,iJrlsJ ¢
=i—1

A(s)

A(s)+ (s —1)A(s)
0551 1— A'(s)

where p = A'(1) = 3772 ja; = E[Y,].
Therefore the stationary distribution exists if and only if p < 1. In this case
o = 1-— pP-

p=Ew) = | " ElYalSuss = 2ldG()
= /OO AzdG(x)

= )\/0 zdG(x) = AE|[s]

<1<:>)\<L
P E[s]
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Continuous-Time Markov
Chains

4.1 Definitions

Let {X(t),t > 0} be a continuous-time stochastic process taking values in the
set of nonnegative integers. If

P{X(t+s)=7X(s)=i,X(u) =xz(u),0 <u<s}=PX({t+s)=jX(s) =1)

for all s,¢ > 0, and nonnegative integers 4, j, x(u),0 < u < s, then {X(¢),¢ > 0}
is called a continuous-time Markov chain.

If P(X(t+ s)=j|X(s) =1) is independent of s, then the Markov chain is
called stationary or homogeneous.

Let 7; denote the amount of time that the process stays in state i before
making a transition into a different states. 7; is exponentially distributed with
parameter v; (E; = U%) A state i with v; = 400 is called instantaneous.

Assume throughout that 0 < v; < +o00, Vi.

The state ¢ is called absorbing if v; = 0. An Markov chain is called regular
if, w.p.1, the number of transitions in any finite length of time is finite.

Pt .,
P/;(0) = thm ]t( ) >0 if i # j

dij = o P.(t) —1
P/;(0) = thm “(tt) <0 ifi=jy
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Z qi; =0
J
qii = — Z qij

J#i

Remark.

Note. | Q = (q;;): generator of Markov chain.
J

P;j(At) = Pij(0) + P;(0)At = qi;At, i #j

¢;j: transition rate from ¢ to j.

PM(At) = Pz’i (0) + PZL(O)At =1+ qiiAt

Vi = —Qis = Zqzj

J#i

v;: rate at which the process makes a transition in state 1.
Probability that a transition from ¢ to j occurs

1 Qi
Pij = qi; <> = f < qij = vibyj
K22 ?

4.2 Birth and Death Processes

Definition 4.2.1. A continuous-time Markov chain with states, 0,1,2,..., for
which ¢;; = 0 whenever |i — j| > 1 is called a birth and death process.

Ai = Qiit1 birth rate
Wi = Qii—1 death rate
v = A + i
Ag
P =
7,541 )\l T L
i
P =
1,0—1 )\Z T 1L;

For BAD process, whenever the process is in state ¢ the time until the next
birth is exponential with rate \;, and is independent of the time until the next
death, which is exponential with rate ;.

Example 4.2.1. (The M/M/s Queue) Suppose that customers arrive at an s-
server service station in accordance with a Poisson process having rate A\. That
is, the times between successive arrivals are independent exponential random
variables having mean 1/\. Each customer, upon arrival, goes directly into
service if any of the servers are free, and if not, then the customer joins the
queue (that is, he waits in line). When a server finishes serving a customer,
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the customer leaves the system, and the next customer in line, if there are any
waiting, enters the service. The successive service times are assumed to be
independent exponential random variables having mean 1/p.

Let X (t) denote the number of customers at time ¢.

Then {X(t),t > 0} is a BAD process.

= min(n, $)p

An = A

{su n>s
Hn
np n<s

A BAD process is called a pure birth process if p,, = 0 Vn.

Example 4.2.2. (Yule Process) Consider a pure birth process resulting from
a population where each member acts independently and gives birth at an ex-
ponential rate A\. No one ever dies.

Let X (t) denote the population size at t.

{X(t),t > 0} is a pure birth process with A, = n\, n > 1.

Consider the case when i = 1, X(0) = 1.

P (t) = P(X(t) =2 j|X(0) =1) = P(X(t) = j +1]X(0) = 1)
Let T; denote the time between the (i — 1)st and the ith birth.
PX(t) 2 jIX(0) = 1) = P(Ty + Ty + -+ Ty1 < 1|X(0) = 1)

{T;,i > 1} are independt and T; is exponential with rate iA.

Py <t)y=1—e*

t
P(Tl + T2 S t) = / P(T1 + TQ § t|T1 = $)A€7A$dl'

0
t

= / P(Ty <t —2)he Mda
0
t

:/ (17672/\(t7x))>\67>\md$
0

— (1 _ e—)\t)2

PTy+To+ - +T;<t)=(1-e M)

Pyj(t)=(1—e Myt — (1 —e ™)
=1 —e M)yl Vi=1,2,--

This is a geometric distribution with mean e*.
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Now if the population starts with ¢ individuals, X (0) = 4, the population
size at t will be the sum of 7 i.i.d. geometric r.v.s, hence is a negative binomial
distribution

L N
Po0 = (12 )eia- ey, iz

with mean ie?t.

4.3 The Kolmogorov Differential Equations

Lemma 4.3.1. For all s,t >0
z] t + 3 Z-sz Pk]

Proof left as an exercise. O

Theorem 4.3.1. (Kolmogrov’s Backward Equations) For alli,j andt >0

Z qﬂcij Z qszkj ‘/ZPIJ (t)

k#i
P'(t) = QP(t)
Proof. Assume there are finite states.

[Pyt + 1) = Py(t)] = & | S0 Palh) Phg8) — Py )
k=0

S =

LIS Palh) g (1) + (Path) — 1) 1)
k#i

Z qlk?P}Cj + qu-sz( )
k#1

O

Theorem 4.3.2. (Kolmogrov’s Forward Equations) Under suitable conditions
(including BAD process and finite state chains).

() = arPi(t) =Y qii P (t) — v Py (t)
k

k#i
P'(t) = P()Q



4.3. THE KOLMOGOROV DIFFERENTIAL EQUATIONS

Example 4.3.1. Consider a two state Markov chain with

o= Ar=[m0 A6

Poo(t) = =APoo(t) + pPor(t)
= —APoo(t) + p(1 — Poo(t))
= —(A+p)Poo(t) +
Poo(0) =1

%[ewﬂm Poo ()] = et

Ap Ap

Pii(t) = ﬁ 4 et

{P n0(t) = 5+ 5Ot
pEmT

Example 4.3.2. For a pure birth process the forward equations are

Pli(t) = aquiPi(t) — vipii(t)
ki
= —\Py(t)
Pu(0) =1
= P”(t) = 67)\”5
Pli(t) = > ars Pax(t) — v; Pis (1)
k)
=qj-1,5 Pii-1(t) = A\ Py;(t)

d
%[eAjtﬂj(t)] =\ —j—1eMNtP®

t
eAjtPij(t) :/ )\j—l GA-jsPi,j_l(S)dS
0

t
Pl(t) = )\j,1 eiAjt/ e’\jSPiyj,l(s)ds
0

For Yule processes, A; = j\.

S v

1—1

39
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4.4 Limiting Probabilities

If limy o0 P;;(t) exists and equals P;, then P; is called the limiting probability
(stationary distribution) of state j.

Theorem 4.4.1. If the limiting probability (P1, Pa,--- ,Py,---) = P exists,

then it satisfies
PQ=0
2 br=1

Proof. Assume there are finite states.
Pji(t) = Z Qrj Pir(t) (forward)
k

Pli(t) =) ainPi;(t) (backward)
k

Jlim Pjj(t) = > P =P;-0=0
k

P; is long run proportion of time the process is in state j.

Doy Wi Pr = 0Py Vj (Balance equations)
rate at which the / \ rate at which the
process  enters process  leaves
state j in the state j in the
long run long run

Example 4.4.1. Consider a BAD processes

State Rate process leave Rate process enter
0 )\()PO ,LL1P1
n = 1a27"’ (>\n+ﬂn)Pn )\n—lpn—l +Nn—1pn—l
N Hn An
AN TN N
01 n—1 n n+1
o ~__ 7 ~__ -



4.4. LIMITING PROBABILITIES

APy = P
)\npn - /\OPO + ,U/n+1pn+1 - NnPn
MPL=XPo+ poPo — i Py = o Py

)\nPn - MnJranJrl

A
p=22p
M1
A A1
p=2tp =2122p
H2 H1p2
AOAL " Ap—
P, = 0A1 1P0
H1i2 - - Un

o~ AoAL - Ap1
P+ S AL Al g
0 ; U2 - 0

-1
o~ AL A
Py = <1 +3 )
o1 Mik2cfin

Provide that

o0
oML A

Z 0Nl n—1 < 400
Hape

n=1

Example 4.4.2. Consider M/M/1 queue.

Ap = A = Yn > 1
SMOT(A) < hmma<n
n=1"" n=1 K
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Example 4.4.3. Consider a job shop consisting of M independent machines
and a repairman. Then breakdown rate of a machine is A and the repair rate is
p. Let X (t) denote the number of machines down at time t € {0,1,2,--- ,n}.
This is a BAD process with parameters pu, =, A\, = A, 0 <n < M.

1
iM)\(Mfl))\m(anJrl)/\
- '

B

1+

S

()

What is long-run proportion of time that a given machine is working?

P(the machine is working) =
M
Z P(the machine is working|n machines are down)P,

n=0
NN !
M 2 (3) we

—\p) (M-n)




Chapter 5

Martingales

5.1 Definitions

Definition 5.1.1. A stochastic process {Z,,,n > 1} is called a martingale if
E\Z,| < +o0 Vn

and
E[Zn+1|Z17 Z27 e 7Zn] = Z’rL

Lemma 5.1.1. For any random variables X, Y, Z.
(a) BIX|Y] = B{E[X]Y, Z]|Y}

(b) EIX|X,Y]=X

(¢) EIXZ|X,Y] = XE[Z|X,Y]

Definition 5.1.2. Given random variables X and Y, and an event A. X is
said to be determined by Y if the value of X is completely determined by that
of Y. A is said to be determined by Y if x4 is determined by Y.

Lemma 5.1.2. (a) E[X|Y] = X if X is determined by Y.
(b) EIX|Y,Z] = E[X|Y] if Z is determined by Y.
Proposition 5.1.1. For a martingale {Z,,n > 1}

EZ)] = E[Z)] Vn

Proof.
E[Zn] = E[E[Zn+1lzlv Z2a e 7Zn]] = E[Zn+1]

43
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Example 5.1.1. Let X3, X5, -+ be independent and identically distributed
random variables with 0 mean, and E|X;| < +oc0. Let Z, =Y 1 | X;.

E|Zn| <Y E|Xi| < 400 Vn
i=1
E[Z’I’L+1|Z1;ZQ7"' )Zn] = E[Zn +X’n+1|Z1)ZQ7"' 7Zn]
= E[Zn‘Zl,ZQ,"' 7Zn} +E[Xn+1|217227"' 7Zn]
=Znp+ E[Xn+1] =Zn

Example 5.1.2. Let X7, X5,--- be independent and identically distributed
random variables with E[X;] =1 and E|X;| < +oo. Let Z, = [[\, X;, n > 1.

[Tl
i=1

E[Zn‘ZlyzQa"' 7Z’n] :E[ZTLXTL+1|217Z2)"' aZ’n]
= ZnE[Xn+1|ZIaZ2; e 7Zn] = Zn

= ﬁE|X1| < 400
i=1

E|Z,| =E

Example 5.1.3. (Doob type martingale) Let X,Y7,Y5, - be random variables
with E|X| < 400 and let Z,, = E[X|Y1,Y2,---,Y,] ¥n > 1.

E|Z,| = E|[EXY1, Y3, -, Vo]
< ElE[|IX][Y1, Y2, -+, Ya]]
= F|X| < 400

E[Zn—}-l‘Yl;}va"' 3}/:11] - E{E[X|Y17Y27 7Yn+1”Y1;}/27"' 3}/';7.}
:E[X|Y17Y27"' 7}/”] :Zn

E[Zn1|21, 22, -+ Zn] =
E{E[Zn+1|Y1aY27"‘ »Yn,ZhZQ?"' aZn”ZhZ%"' vZn}
= E[Zn+1|Y17Y27"' 7Y7L] = Zn

5.2 Stopping Times

Definition 5.2.1. The positive, integer valued, possibly infinite, random vari-
able N is said to be a random time for the process {Z,,n > 1} if the event
{N = n} is terminated by Z1,Zs, -+, Z, Vn if P(N < +oc0) = 1, then the
random time N is said to be a stopping time.
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Zn, in<N
Zy ifn>N
{Zn,n > 1} is called the stopped process of {Z,,n > 1}.
{Z1,Z4,--+ ,Zy} is determined by {Z1, Za, -+ , Zp}.

Let N be a random time for {Z,,n > 1} and Z,, = {

Proposition 5.2.1. If N is a random time for the martingale {Z,,n > 1},
then the stopped process {Z,,n > 1} is also a martingale.

Proof. Deﬁniln = Xn<nN, which is determined by Z1, Zs,- -+, Zy,—1.
We have Z,, = Z,y_1 + I,(Zp — Zpp_1)

E[Zn|Zl7 ZZa e 7Zn—1] = E[Zn—l + In(Zn - Zn—1|Zla Zg, e aZ’rL—l)}
= Zn—l + In E[Zn - Zn—lIZh Z2a e 7Zn—1]

0

= anl
O

Theorem 5.2.1. (The Martingale Stopping Theorem/Optimal Sampling The-
orem) Let N be a stopping time for the martingale {Z,,n > 1}. If either

(i) Z, are uniformly bounded; or
(i) N is bounded; or
(#ii) E[N] < 400 and there is M < 400 such that

EHZn—l 7Zn| |Z17"' 7Zn] < M

Then E[Zn] = E[Z1].

Proof. Assume (i). By Proposition 5.2.1, E[Z,,] = E[Z,] = E[Z1] Vn. However
P(N < +o00)=1, P(Z, — Zn,asn — +00) =1

E[Zx]) = E[lim Z,]= lim E[Z,] (dominated convergence theorem)
= E[Z)]
O

Corollary 5.2.1. (Wald’s Equation) If X;, i > 1, are independent and identi-
cally distributed random variables with E|X;| < 400, and N is a stopping time
for X1, Xa, -+ with E[N] < +00. Then

N

2 X

i=1

E = E[N]E[X;]
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Proof. Let M = E[X;] < 400, and
n
Zn = Z(Xz - H)
i=1
{Z,,n > 1} is a martingale.

E[|Zn+1 _Zn| ‘Zla"' 7Zn] = E[‘Xn—i-l _M| |Zlv"' 7Zn}
< E|Xpp|+p < 400

ElZN]=E[X1—p]=0

I
N

N
> (K- u)] =E l_ZXi — Ny
=1 1;1

>

i=1

E

=FE — WE[N]

O

Example 5.2.1. (Simple Random Walk) Consider an individual who starts at
0 and at each step either moves 1 position to the right with probability p or
one to the left with probability 1 — p. Assume that the successive movements
are independent. If p > 1/2 find the expected number of steps it takes until the
individual reaches position 4, i > 0.

Solution.
. 1 step 7 is to the right
77 ] =1 step j is to the left
N : # of steps to reach 4
N
> X;=i=i=E[N|E[X;] = E[N](2p-1)
j=1
i
EIN|=——
V] (2p—1)
Ifp= %, then 0 is recurrent. O

Example 5.2.2. (Three Players) Players X, Y and Z contest the following
game. At each stage two of them are randomly chosen in sequence, with the
first one chosen being required to give 1 coin to the other. All of the possible
choices are equally likely and successive choices are independent of the past.
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This continues until one of the players has no remaining coins. At this point
that player departs and the other two continue playing until one of them has
all the coins. If the players initially have x,y and z coins, respectively, find the
expected number of plays until one of them has all the s = x + y + z coins.

Solution. Consider an equivalent game: each player may hold “negative” num-
ber of coins. For example, at some time, X, Y and Z have 0, -4 and s + 4 coins
respectively. Let X;, Y; and Z; denote the number of coins X, Y and Z have
after ith round. Let T denotes the first time that two of the values X,,, Y,,, Z,
are 0. The question is to find E[T].

First show M, = X,,)Y,, + Y, Z, + Z,X,, + n is a Martingale.
Case 1 X, Y, Z, # 0.

E[Xpi1Yps1|Xn = X, Y, = Y]
=[z+Dy+@+D)y—-D+z@+1)+z@my—1)

- Dy+ (- Dy +1)] - =

6
1
= T — —_ =
Y73
1 1 1
EM, 1| X, =2,Y, =y, Z, = 2] :(asy—§)+(yz—§)+(mz—§)+(n+l)

=zy+yz+ze—1+(n+1)
=TYy+yz+zr+n

= E[My11|1Xn, Yo, Zn] = M,
Case 2 X,,)Y,,Z, = 0. (Assume X,, = 0, i.e. one player has quitt ed.)

ElYpi1Zn|Yo =y, Zn=2]=[(y+ Dz -1 +(y-1)(z+1)]-

=yz—1

N =

= EM, 11X, Y0, 2, =Y Z, — 14+ (n+1) =Y, Z, + n=M,

Since two of X7, Yr and Zr are 0, it follows that F[T] = E[Mr]. Consider
T is a stopping time, from Theorem 5.2.1

E[Mr] = E[My] = zy +yz + 2z
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5.3 Azuma’s Inequality

Lemma 5.3.1. Let X be such that with E[X] =0 and P(—a < X < ) = 1.
Then for any convex function f

I6) «

BU@) £ 2 r-a)+ 2= 1(6)
Proof. Let X = (1 — A\)(—a) + 5.
X+t o, _B=X
Aia—&-ﬁ ! Aia—i—ﬁ

f(z) is convex function.

Lemma 5.3.2. For any0 <6 <1 and X € R, we have
ge1-0)z 4 (1- 9)6—09c < et’/8
Proof. Let 6 = 1+7’1, r =203, we need to show forV—1<a <1, f€R,
(14 a)el1=9 4 (1 —q)e P+ < 2e7°/2

or, equivalently,
2
P e P+ ae — e P) < 2e28H8/2

It is true when a = %1 or |3] is large, intuitively.

Let f(a, ) = e® + e 8 4 a(ef — eP) — 2e20+67/2,

We need to show f(«,3) <0, for —1 < a < 1 and |8 < 100.

Otherwise, there is a maximum point, o* € (—1,1), 5* € (=100, 100), such
that f(a*,0%) > 0. (8* # 0, otherwise f(a*,0) =0)

0 « « . a% |
Oz—fa =€ —e P —2ﬁ*eaﬁ+52/2
Oa | g=p~

= af . . . . ¥
0= Zlamar =€ —e P +a* (e +e ) =2 + ") FHF7/
9B | s=p*

1 L e _af 1
I L T

e e _at

L L
P —e P B
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Ifa*:O,fromO:Z—g

But

. . X axi X ax\i 002 *(21+1)
S LA o i 26=0
0

Ll e T (2t 1)

2 - 201 .l
=0 i=0 =0

. > *2 % 0 *) 24 e *)2i+1

Consider (2i + 1)! and 2 - i!, we have (2i + 1)* > 2 - 4! Vi.
So ef —¢™" < 28%¢f"/2 and a* £ 0.
B -p"
e’ +e 1 . x x .
- - * (B =By = B B
Soeﬂ*ieiﬁ*—ﬂ*,l.e.ﬁ(e +e P )=e e P
or, expanding in a Taylor series,
0 (6*)22'4-1 > (6*)2i+1
(200 & (2i+1)!
which is clearly not possible when §* # 0. O

Theorem 5.3.1. (Azuma’s Inequality) Let {Z,,n > 1} be a martingale with
w= E[Z,]. Let Zy = p. Assume for a, >0, 3, >0, n>1,

—Qn < Zy — Zp-1 < Bn
Then Vn>0,a >0
P(Z, —p>a)<exp [—2(12/2?:1(042* + ﬂz)z}
P(Zy — i< ~a) < exp|-20%/ Sy (0 + ;)]
Proof. First assume p = 0, for any ¢ > 0.
P(Z, > a) = P(e“?n > e%) < e7 . Ele®?n] (Markov’s inequality)

Let W,, = e“», n > 0.
Then Wn = eCanleC(Zn—anl) = Wn7160(27l_Z"71).

E[Wn|Zn—l] = Wn—lE[ec(zniznil) |Zn—1]

Noticing E[Z,, — Zp—-1|Zn—-1] = 0, apply Lemma 5.3.1 to get

E[Wn|Zn71] S anl Le—can + dn ecﬁn £ anlyn

ay + B ay + B
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i=1 i=1

e—ca Qi cf
H |:an + 571 Qp + 571

Let 0; = o +5 , © = c¢(a; + B;), applying Lemma 5.3.2, we have
n
(az + ﬂz)
EW,] <
(W] EeXp ( 3
Hence
P(Z, > a) <exp —ca-l-z (o + B1)° ‘|éf(c)
i=1 8
f(c) achi ini tc* da >0
¢) achieves minimum at ¢* = —7——— .
>y (i + 6)?

So

P(Zy > a) < exp [-2a°/ 307 (i + ;)?]

P(Z, < —a) <exp[—2a?/ 37 (i + B:)?]
For p # 0, consider {Z,, — p,n > 1} and {p — Z,,,n > 1}. O

Example 5.3.1. Let X1, X5, -+ berandom variables with E[X;] = 0, E[|X;|] <
400 and E[X,L|X1, s ,Xifl] =0 for i > 1.

1. Z, =), X; is Martingale (from definition).
2. Now suppose —o; < X; < ;, Vi, u = E[Z,] = 0. By Theorem 5.3.1

P (ZXi 2&) < exp

i=1

P (i X, < —a) < exp [—ZQZ/i(ai —i—ﬂi)Q

i=1

~2a%/ Z(ai + 6i)°
i=1

Example 5.3.2. Let h be a function such that if the vectors © = (x1,--- ,zy),
y = (y1, -+ ,yn) differ in at most one coordinate, then |h(z) — h(y)| < 1. Let
X1, -+, X, be independent random variables. Then with X = (X, ---,X,),
we have Va > 0

(i) Plh(z) — Elh(z)] > a] < e /2"

(ii) Plh(z) — E[h(z)] < —a] < e=@*/2n
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Proof. Consider the Doob type martingale (Example 5.1.3)
Z; = E[h(X)| X1, -, X;]

| E[h(X)| X1 =21, , Xi = 2] = E[MX)| X1 =21, , Xio1 = 251
=| Elh(z1, -, 24 Xit1, -, Xn)] — E[h(z1, -+ s 21, Xy -+, X))
= | E[h(z1, @5, Xig1, > Xp) = h(@1, - w1, Xy, X))
= EHh(l’l, e axiaXi+lv - ,Xn) — h(l’l, . axi—l,Xi; Ce 7Xn)H
<1 (only X; may be different in two items)
So|Z;i—Z;—1| <lor —1<Z;—Z;_1 <1, applying Azuma’s inequality with
a; = B; = 1 and noticing Z,, = h(z) and E[Z,] = E[h(X)],

Pli(a) = Elb(e)] 2 @) < oxp (— o ) =/

i=1

5.4 Martingale Convergence Theorem

Definition 5.4.1. A stochastic process {Z,,n > 1} with E[|Z,|] < +oo, ¥n >
1, is called a submartingale if

E[Zn+1|Zla tee 7Zn] 2 Zn
and a supermartingale if
E[Z7L+1|Z17 e 7Zn] S Zn

Theorem 5.4.1. If N is a stopping time for {Z,,n > 1} such that any one of
the three condition (i) - (iii) of Theorem 5.2.1 satisfies, then

E[ZN] > E[Z1] for a submartingale
E|Zy]) < E[Z1] for a supermartingale

Lemma 5.4.1. If{Z;,i > 1} is a submartingale and N be a stopping time such
that P(N <n) =1 for a given n, then E[Z1] < E[Zn] < E|Z,].

Proof. Only need to show E[Zy] < E[Z,].

k<n
=Y E[E[Zn| 21, , Zk|IN = k]P(N = k)
k<n
> " E[ZN = KJP(N = k)
k<n

= E[Zx]



52 CHAPTER 5. MARTINGALES

O

Lemma 5.4.2. If {Z,,n > 1} is a martingale and f is a convex function with
E[|f(Z,)]] < 400, ¥n, then {f(Z,),n > 1} is a submartingale.

Proof.
Elf(Znt)| 20,5 Znl 2 f(ElZn| 20, -+ Z0]) = [(Z0)
O

Theorem 5.4.2. (Kolmogorov’s Inequality for Submartingale) If {Z,,n > 1}
is a nonnegative submartingale, then Ya > 0

E[Z,]

P(max(Z1, - ,2Z,) > a) <
a

Proof. Define N = min{i : Z; > a,i <n} (N =n, it Z; <a, Vi <n). Then N
is a stopping time with P(N < n) = 1. Now from Lemma 5.4.1
E|Zy] _ E[Z,]

<
a a

P(max{Zy, -+ ,Zn} > a) < P(Z, > a) <

Corollary 5.4.1. Let {Z,,n > 1} be a martingale, then Va > 0

(i) P(max{|Z|,---,|Zn|} >a) < %
(i) P(max{|Z1], - ,|Zn]} > a) < Egn]

Proof. Parts (i) and (ii) follow from Lemma 6.4.4 and Kolmogrov’s inequality
since the functions f(x) = |x| and f(z) = 2? are both convex. O

Theorem 5.4.3. (The Martingale Convergence Theorem) If {Z,,,n > 1} is a
martingale such for some M < +0o0

E|\Z,| <M Vn
then, with probability 1, lim,,_,. Z, exists and is finite.

Proof. Assume that E|Z,|> < M Vn. By Lemma 5.4.2, {Z2n > 1} is a
submartingale. So FE|Z,|? is nondecreasing. However E|Z,|> < M, hence,
lim,, o | Z,|? = p exists. Now we want to show that {Z,,n > 1} is a Cauchy
sequence with probability 1, i.e. with probability 1

| Zmtk — Zm| — 0 asm,k — oo
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Now fixe >0and n > 1

P(|Zysr — Zp| > € for some k < n)
< E\Zmin — Zn|

> (Corollary 5.4.1 - (ii))

1

2

ElZh i = 2ZminZm + 21 (%)

- E[ZmE(Zm+n|Zn)}
E

= E[Z;,)
1 2 2
Leaving n — oo
1
P(|Zm+r — Zm| > € for some k) < — (u — E[Z2)])

€
Leaving m — oo
P(|Zm+k — Zm| > € for some k) — 0

Thus, with probability 1, Z,, will be a Cauchy sequence, and thus lim,, ., Z,
will exists and be finite. O

Lemma 5.4.3. If {Z,,n > 1} is a nonnegative martingale, then, with proba-
bility 1, lim,,_, Z, ezists and is finite.

Proof.
E|\Z —n| = E|Z,] = E[Z1] < 4 n
O

Example 5.4.1. Consider a gamble playing a fair game whose fortune is Z,
after nth play. On each gamble at least 1 unit is either lost or won and no credit
is given.

Let N = min{n : Z,, = Z,+1} denoting the number of play until the gamble
is broke. Since {Z,,n > 1} is a nonnegative martingale, lim,,_,, Z,, exists and
is finite with probability 1. However |Z,+1 — Z,| > 1,Vn < N

= P(N <o0) =1
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Chapter 6

Brownian Motions

6.1 Definitions and Basic Properties

Definition 6.1.1. A continuous-time stochastic process {X(t),¢ > 0} is called
a Brownian motion (or Wiener process) if

(i) X(0)=0
(ii) {X(¢),t > 0} has stationary and independent increments.
(iii) X (t) ~ N(0,c%*t) Vt >0

It is called a standard Brownian motion if ¢ = 1 (which we will assume through-
out).

+1 if the ith step of length Ax is to the right

where X; =
—1 if it to the left

E[X()] =0

Var[X(1)] = (Az)? - 1- {Att]

Take Az = v/ At, then Var[X ()] =t.

Basic properties of Brownian motion {X(¢),t > 0}
(a) X(¢) is a continuous function of ¢ with probability 1.

(b) X(t) is nowhere differentiable with probability 1.

95
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(¢) X(t) is Markovian.

=PX({t+s)—X(s)<a—2z|X(s)=2,X(u),0<u<s)
=PX({t+s)—X(s) <a—2x)

=PX({t+s)—X(s) <a—2x|X(s) =x)

=P(X(t+s) <alX(s) =x)

(d) Cousider the joint distribution of X (t1), X (t2), -, X (¢,) where 0 < ¢; <
to < -+ <ty

First of all, the density function of X (¢)

fi(z) = \/TW

The joint density of X (¢1), X (t2),- -, X (tn)

—_

e—m2/2t

flen, e, mn) = fi, (21) fro—ta (@2 — 21) - fr—tpy (Tn — Tn1)
(e) For s <t, the covariance
cov(X (s), X(t)) = cov(X(s), X(s) + X (t) — X(s))
= cov(X(s), X(s)) 4+ cov(X(s), X (t) — X(s))
(f) Fix t; >0, X (¢t +t1) — X(t) is still a Brownian motion.

Example 6.1.1. Compute the conditional distribution of X (s) given X (t) = B
where s < t.

Solution. The conditional density

Cj@B) LB )
IeB) =5 0B~ A

1
274/ s(t—s) { x? (B — {E)2 B? }
= ————expq— —

25 2(t—s) 2t

| { (xfis)?}
e
27r§(t ) 2;@ —5)

It is a normal distribution with

E[X(s)|X(t) = B] = B%

= E[X(s)| X (1) = SX(1)



6.2. HITTING TIMES

6.2 Hitting Times

Given a Brownian motion {X (¢),¢t > 0} anda € R*, T, =inf{t > 0: X (¢) =
Ifa>0

P(X(t) > a) = P(X(t) > a|T, < t)P(T, <t)
+ P(X(t) > a|lT, <t)P(T, <t)

= JP(T, <)

P(T, <t)= 2P(X(t) > a)

e~ Y /Qtdy
\/7
e /2g
Y
v% a/Vi

E[T,] = /ODO P(T, > t)dt

:/O <1—/ _y2/2dy> dt
=l / o Ry

a?/y?
eV’/2 dtd
\/27r/ / Y

2a2 e y/2d
- V2r o y? Y

2a? 1e_y2/2d
“VermJoo y? Y

2a2 1
>—efl/2/ —d

V2T 0o Y2 Y
=00

If a < 0, then by symmetry

Fora >0

o7

a}.
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Let 0(t1,t2), where to > t; > 0, denote the event that the Brownian motion
takes on 0 at least once in the interval (¢1,t2).

P(0(t1,t2)) = (O(t1, 2)| X (t1) = z)e~ " /21 dg;

\/ﬁ
Since Y (t) = X (t1 +t) — X (t1) is a Brownian motion

P(0(t1,12)[X(t1) = 2) = P(T}z) < t2 — t1)
So

P(O(tl, t2)|X(t1) = .’)3)

7’[/ /2 tz tl)dy 6726 /2t1d1,
2 .t
=1— —arcsin,/—
71' tQ

2
P(Brownian motion takes no zero value in (xt,t)) = = arcsin/z
T

“ G e )

Proposition 6.2.1. For0 <z <1 andt > 0,

6.3 Variation on Brownian Motion

Model 1. (Brownian Motion Absorbed at a Point) Let {X(¢),t > 0} be a
Brownian motion and z > 0. Define

20) = {X(t) ift<T,
T ift>T,

then {Z(¢),t > 0} is Brownian motion that when it hits  remains there forever.

o0 2
eV /gy

)= V2t Ja
<s<t

P(Z(t)gy)—P<X()<y, max X (s )<x)

= P(X(¢) Sy)—P(X(t) <y, max X(s) 23:)

0<s<t

—p (X(t) < y‘ max X(s) > 1:) P (max X(s) > x)

0<s<t
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=P (X(t) >+ (z )| max, X(s) > a:)

P(Z(t) <y)=(y—22 < X(t) <y)

1 /y —u2/2td
= e U
\V2rt y—2z

Model 2. (Brownian Motion Reflected at the Origin) If {X(¢),t > 0} is a
Brownian motion, then {Z(¢),t > 0} = {|X(¢)|,¢ > 0} is called a Brownian
motion reflected at origin.

2
Var[Z(t)] = (1— =)t (<)
™
Model 3. (Geometric Brownian motion) If {X(¢),¢ > 0} is Brownian motion,
then {Y'(t),t > 0} = {X®) t > 0} is called geometric Brownian motion.
Moment generation function of X (¢)

1/}(5) _ EesX(t) _ 6t52/2

and therefore
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Var[Y (t)] = E[Y (t)?] — €'
— Be2X() _ ot

=€ — €

Model 4. (Integrated Brownian motion) If {X (¢),t > 0} is Brownian motion,
then

(Z(t),t >0} = {/OtX(s)ds,t > 0}

is called integrated Brownian motion.

:E/O X(s)dSZ/O BIX(s)]ds = 0
cov(Z(s),Z(t)) = E[Z(s)Z
E

/OX dy/X du}

| e x iy

For s <t

[}
[}

s t
/ min(y, u)dy du

0

/O t
[ [ ]
/0

) Buz +u(tu)] du

t s
=G5

3

VarlZ () = (5 - 5 = 5

6.4 Brownian Motion with Drift

Definition 6.4.1. A stochastic process {X(¢),¢ > 0} is a Brownian motion
with drift coefficient pu if

(i) X(0) =0;
(ii) {X(¢),t > 0} has stationary and independent increments;

(iil) X (¢) ~ N(pt,t).

Or X (t) = pt + B(t) where {B(t),t > 0} is standard Brownian motion.
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Example 6.4.1. Consider a drifted Brownian motion {X(¢),¢ > 0} with drift
1. Compute the probability that the process hits A before —B, where A, B > 0
are given.

Solution. Let P(x) = P{X(t) hits A before —B|X(0) = z}, where —B < = <
A. Then

oo

P(X(t) hits A before —B|(X(0) = z,Y = y)dFy(y) + o(h)

I
8

E

Pa:—f—y dFy( )+O(h)

/ P(X(t) hits A before —B|X(0) =z, X(h) = = + y)dFy (y) + o(h)

8

= E[P(z +y)] +o(h)
E P”(X)Y2 -]—|—O(h)

pu2h? + h
2

[P(x) + P'(2)Y +

— P(a) + uhP'(z) + P"(x)

uP'(z) + %P”(m) =0
2uP(z) + P'(z) = 1

d

L (e pla)] = eyt
P(x) = Cy + Cpe®®

With the boundary conditions that P(A) = —1, P(B) = 0, we have

2uB
e -1
Csy =

2uB 672;1,:5

Ci=————— - -
1 e2nB _ o—2pA e2muB _ o—2pA

(&

P(x) = o2uB _ g—2uA

Starting at = 0, the probability of reaching A before —B

e2nB _ 1

P(0) = e2uB _ o—2uA

If 4 <0, letting B — o0

P(the process ever goes up to A) = 24

=1— > =1 — 21A
P(r{lzach(t)<y> 1 P(r{lﬁch(t)y) 1—e

Therefore max;> X (¢) is an exponential random variable with parameter —2u.
O
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Example 6.4.2. A stock call option with an exercise price A. The current
price of the stock of the stock is 0 and the price follows Brownian motion with
drift —d, d > 0. When should we exercise the option?

Solution. Suppose we exercise when the price is (> A). The expected gain is
P(z)(x — A), where P(z) is the probability that the price ever hits A.
The gain function

f(z) = P(a)(z — A) = e (z — A)

Letting f/(x) = 0 we have the maximum point © = A + ﬁ.

6.5 Martingale and Brownian motion

Definition 6.5.1. A continuous-time process {X (¢),t > 0} is called a martin-
gale if E|X(t)] < ooVt >0 and E[X(t)|X(u),0 <u<s]=X(s)Vt>s.

Proposition 6.5.1. Let {B(t),t > 0} be a standard Brownian motion. Then
all the following processes are martingale:

(a) Y(t) = B(t)

(b) Y(t) = B(t)> -t

(¢c) Y(t) = exp{¢B(t) — S} Ve € R
Proof. (a)

(c) Left as as exercise.
O

Definition 6.5.2. A random variable 7 > 0 is called a stopping time for a
stochastic process { X (¢),t > 0} if the event {7 < t} is determined by {X(s),0 <
s <t} Vt>0.
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Theorem 6.5.1. (Martingale Stopping Theorem / Optimal Sampling Theorem)
Let 7 be a stopping time for a martingale {X (t),t > 0} satisfying either
(i) T is uniformly bounded, or

(i) P(T < 4+o00) =1 and Vt >0

X (tAnT)| <K
——

min(t,7)
Then E[X(s)] = E[X(0)].
Example 6.5.1. X (t) = B(t) 4+ ut where B(t) is a standard Brownian motion.
For A, B > 0 define stopping time T'= min{t > 0: X(¢t) = A or X(t) = —B}.
What is Py = P(X(1) = A)?

. . 2
Solution. By optimal sample, E exp{cB(T) — L} = 1.

T2
Elexp{cX(T) — cpT — 07}] =1
Take ¢ = —2u, Eexp{—2uX(T)} = 1.

e AP, 4B (1 Py =1

e2nB _ 1

P = ———
AT T2uB _ p—2uA

Now {B(t),t > 0} is martingale.
0= EB(T) = E[X(t) — uT]
E[T] = %(APA — BPg)

B Ae?tB 4 Be=24 _ A — B
- ’u[emB _ 6—2;1,4}
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Chapter 7

Introduction to Ito
Calculus

7.1 Stochastic Integration

Given a (standard) Brownian motion {B(t),¢ > 0}. For fixed T' > 0, define
L2(0,T;R) = {{X(t) 0<t<THvtelo,T),

X (t) is determined by B(s), 0 < s <t, and E/ 2ds < +oo}

For X,, n = 1,2,---, X € Lg(0,T : R), we say X,, 2ox as n — 00
if EfOT | X, (s) — X(s)|*ds — 0 as n — oo. We are now to define stochastic
integration fo s)dB(s) for f € L%(0,T;R).

Step 1. If f is a simple process

k—1

f(t) = fOX{t:O} (t) + Z fiX(ti,ti+l](t)

=0

where 0 =tg <t; < --- <t =T, f; is a random variable determined by B(s),
0 < s < t;. Then define

/ F(5)dB(s Zfl tisn) — B + f51B() — B(ty)]

ifte (tj, tj+1}.
Step 2. For any f € Lz(0,T;R), 3{f,} that are simple process such that

L2
fn — [ as n — oo. Define

/0 f(5)dB(s) = lim fn() B(s)

n—oo

65
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fo ) is called the Itd’s integral. For any s <t € [0, 7]

/de /de /de

Theorem 7.1.1. Vf,g € L%(0,T;R)
t
(i) E[/ F(r)aB()|B@),0<u<s]=0,v0<s<t<T

(ii)) VO< s <t<T

/f )dB(r / r)dB(r ‘B ogugs}

=F Atf(r)g(r)dr‘B(u)70 <u< s}
(i) E/Otf(r)dB(r) =0,Vte[0,T]
(iv) E[/Otf(r)dB(r)/ E/ F)g(r)dr, ¥t € [0,T]

(v) E’/tf(r)dB(r)‘ :E/ ‘f(T)|2d7"

Remark. By (i fo ) is a martingale.

E[X()|B(u),0 <u < 5] = Uf )dB(r /f )dB(r ’B 0<u<s:|

:/frdBr:Xs)
0

Definition 7.1.1. A multi-dimensional stochastic process
{B(t) = (By(t), - , B (t))T} is called a Brownian motion if

(i) B(0) =0;
(i1) {B(t),t > 0} has stationary and independent increments;
(iii) EB(t) =0, E[B(t)B(t)T] = tIxm Vt.
Given an m-dim Brownian motion B(t) and f = (f1,-- , fm) € L%(0,T;R™)

/de Z/fldB

Similarly for / o(s)d B(s) where o(s) is n X m matrix-valued process.
—~

0
nxm mxl1
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7.2 It0’s Formula

Recall the deterministic case. If X () ) + fo (or dX (t) = b(t)dt),
given F(t,z) € C*([0,T] x R)

dF(t,X(t)) = ;j(t X (t))dt + g—)ﬁ;(t,X(t))dX(t)
(&S

or equivalently

Ft, X (1)) = F(0, X(0)) +/t(%f (s. () + gﬁ; (5. (s ))b(s))ds

Theorem 7.2.1. (Ité’s Formula) Let an n-dim stochastic process {X (t),t > 0}
be given as

¢ ¢

X(t) = X(0) +/ b(s)ds+/ o(s)dB(s)

0 0

| S —

diffusion term
where b € L%(0,T;R?), 0 € L%(0,T;R"*™). Let F € C*?([0,T]xR?) be given.

dF(t, X () = F(t, X (t))dt + Fx (t, X())dX (t)
1

+5 [o(t)TFXX (t, X(t))a(t)dt} dt

F(t,X(t) = F(0,X(0)) + /Ot{Ft (£, X(t) + Fx(t, X(t))
+;Tr[a(t)TFXX(t,X(t))a(t)dt}}ds+/0 Fx (s, X(5)) o(s)dB(s)

OF oF \ T 9°F
Fy=[—... 2} F
where Fx (axl X, ) Xx = <aX aXJ)m

Example 7.2.1. Calculate E| fo s)dB(s)|*.

Solution. Let X (¢ fo ), F(t,x) = 22,

X(t)QzF(uX(t)):/o 0(3)2d8+/0 2X (s)o(s)dB(s)

BIX(8)?] = E/O'U(S)Qd
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Example 7.2.2. Calculate EeP®).
Solution. Let X (t) = B(t) = fot dB(s), F(t,z) = e®.

t 1 t
eX<t>:F(t,X(t)):1+/ 56X<S>ds+/ e dB(s)

0 0

Let y(t) = E[eX®)

O

Example 7.2.3. Let dX;(t) = b;(t)dt + 0;(t)dB(t), where ¢ = 1,2. Calculate
d[X1(8) X2 (t)].

Solution. Take X (t) = (Xl(t),Xg(t))T, F(t,z1,29) = x129.

d[X1(t) X2(t)]
= dF(t, X1(t), Xa(t))

= | X2(t)by(t) + X1 (t)ba(t) + ( 1(8) + oot )> <(1) (1)> (Z;Eg)]dt

+ [Xa(t)or(t) + X1 (t)o2(t)]dB(t)
= Xa(t)dX(t) + Xa(t)d Xy () + o1 (t)oa(t)dt

M\H

7.3 Stochastic Differential Equations
Consider the following stochastic differential equation

[dX(8) = b, X (6))dt + o (t, X (1)) dB(?)
=1 %0 = x,
or

X(t) :xo—i—/o b(s,t(s))ds—i—/o o(s,X(s))dB(s)

Definition 7.3.1. A stochastic process {X(t) € R™,t > 0} is called a solution

o (x) if
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(i) X(¢) is Fi-adapted.
(i) P(X(0) =Xo) =1

(i) E/Ot[|b(s),x(s)| + |a(s,X(s)|2] <00, V>0

¢ ¢
(iv) P (X(t) = 1 —|—/ b(s, X (s))ds —l—/ o(s,X(s))dB(s) Vt > 0) =1
0 0
Moreover, (x) is said to have a unique solution if for any two solutions z(t), y(t)
one must have P(z(t) = y(t) Vt) = 1.
Theorem 7.3.1. If there exists L > 0 such that
|b(t, ) = b(t,y)| < Lz —y]
lo(t,z) —o(t,y)| < Llz —y| Y,y (Lipschitz condition)
|b(t, z)| + |o(t,2)| < L(1+ |z]) Y (linear growth)
Then () admits a unique solution {X(t),t > 0} satisfying E sup |X(t)]' <
0<t<T
KT,L; VO<T < o0
E|X(t) — X(s)|' < K|t — s|/?
where | > 1.
Remark. (i) If the linear growth condition fail, we can have
dX (t) = X (t)%dt
X(0)=1

1

The only possible solution is X (t) = 1=,

fore there is no solution.

which explodes at ¢t = 1. There-

(ii) If Lipschitz condition fails, we can have

dX(t) =2X(t)%/3at
X(0)=0
X (t) = (t — ¢)® satisfies dX (t) = 2X (t)%/3dt Ve > 0.

4
Take X(t) = {(()t Bt i © which is also solution.
—c >c

Therefore there is no unique solution.

Example 7.3.1. Solve the Ornstein-Uhlenbeck equation

dx(t) = px(t)dt + odB(t)
X(O) =T
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Solution.

dX(t) — pX (t)dt = odB(t)
e M (dX(t) — pX(t)dt) = oe " dB(t)
dle "X (t)] = ce "dB(t)

t
eMX(t) — Xo = / oe " dB(s)
0

¢
X(t) = Xpe M + ae”t/ e "*dB(s)
0

A Challenge Left as an Exercise

do(t) = A@t)P(t)dt + c(t)P(t)dB(¢)
B(0) =1
Assume |A(t)] + |e(t)] < K.
1. Is ®1(t) exists?

2. ®~1(t) satisfies what equation?



